Lightweight and high-strength polymer-derived SiOC ceramics with varied lattice structures have been successfully produced using different polysiloxanes as preceramic polymers (PCPs) via photopolymerisation-based digital-light-processing 3D printing and pyrolysis. Photocurable precursor resins were prepared by simple mixing of polysiloxanes with photosensitive acrylate monomers, achieving good flowability and preserving desirable stability under different heating and oscillation conditions. Complex micron-sized structures were manufactured with high precision via the optimisation of polymer formula and printing parameters. The printed PCPs pyrolysed at 600-1000°C preserved fine features with uniform shrinkage. The skeletons were almost fully dense, with smooth and flawless surfaces at macro/micro scale. Porosities and mechanical properties, including apparent compressive strength, elastic modulus, and indentation hardness, were characterised. XRD, FT-IR, Raman spectroscopy, and XPS were used to explore the chemical variations in elements and atomic bonds. High specific compressive strength to density ratios was obtained for the SiOC lattices compared with other porous ceramics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.