Purpose Clinically, the risk stratification of thyroid nodules is usually used to formulate the next treatment plan. The American College of Radiology (ACR) thyroid imaging reporting and data system (TI‐RADS) is a type of medical standard widely used in classification diagnosis. It divides the nodule’s ACR TI‐RADS level into five levels by quantitative scoring, from benign to high suspicion of malignancy. However, such assessment often relies on the radiologists’ experience and is time consuming. So computer‐aided diagnosis is necessary. But many deep learning (DL) models are difficult for doctors to understand, limiting their applicability in clinical practice. In this work, we mainly focus on how to achieve automatic thyroid nodules risk stratification based on deep integration of deep learning and clinical experience. Methods An automatic hierarchical method of thyroid nodules risk based on deep learning is proposed, called risk stratification network (RS‐Net). It incorporates medical experience based on ACR TI‐RADS. The convolutional neural network (CNN) is used to classify the five categories in ACR TI‐RADS and assign their points respectively. According to the point totals, the level of risk can be obtained. In addition, a dataset involving 13 984 thyroid ultrasound images is established to develop and evaluate the proposed method. Results We have extensively compared the results of this paper with the evaluation results of sonographers. The accuracy of the risk stratification (TR1 to TR5) of the proposed method is 65%, and the mean absolute error (MAE) is 0.54. The MAE of the point totals (0 to 13 points) is 1.67. The Pearson's correlation between our method evaluation and doctor evaluation reached 0.84. For the benign and malignant classification, the performance indices accuracy, sensitivity, specificity, PPV, and NPV were 88.0%, 98.1%, 79.1%, 80.5%, and 97.9%, respectively. Our method's level of thyroid nodules risk stratification is comparable to that of a senior doctor. Conclusions This work provides a way to automate the risk stratification of thyroid nodules. Our method can effectively avoid missed diagnosis and misdiagnosis caused by the difference of observers so as to assist doctors to improve efficiency and diagnosis rate. Compared with the previous benign and malignant classification, the proposed method incorporates clinical experience. So it can greatly increase the clinicians’ trust in the DL model, thereby improving the applicability of the model in clinical practice.
Power dispatching systems currently receive massive, complicated, and irregular monitoring alarms during their operation, which prevents the controllers from making accurate judgments on the alarm events that occur within a short period of time. In view of the current situation with the low efficiency of monitoring alarm information, this paper proposes a method based on natural language processing (NLP) and a hybrid model that combines long short-term memory (LSTM) and convolutional neural network (CNN) for the identification of grid monitoring alarm events. Firstly, the characteristics of the alarm information text were analyzed and induced and then preprocessed. Then, the monitoring alarm information was vectorized based on the Word2vec model. Finally, a monitoring alarm event identification model based on a combination of LSTM and CNN was established for the characteristics of the alarm information. The feasibility and effectiveness of the method in this paper were verified by comparison with multiple identification models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.