In a sudden load increasing process (SLIP), the hydroelectric generating system (HGS) experiences a severe vibration response due to the sudden change of the hydraulic-mechanical-electric parameters (HMEPs). The instability of HGS limits the ability of sudden load increase, and its flexibility and reliability are reduced. Thus, in this study, a new transient nonlinear coupling model of HGS is proposed, which couples the hydro-turbine governing system (HTGS) and the hydro-turbine generator shafting system (HGSS) with the hydraulic-mechanical-electric coupling force, rotating speed, flow rate, hydro-turbine torque, electromagnetic torque, and guide vane opening. By using numerical simulation, the influences of different HMEPs on the vibration characteristics of HGS in SLIP are analyzed. The result shows that, compared with stable operating conditions, the vibration amplitude of HGS increases sharply in SLIP. The increase of the sudden load increasing amount, blade exit flow angle, mass eccentricity and excitation current, and the decrease in guide bearing stiffness and average air gap between the stator and rotor cause abnormal vibration of different degrees in the HGS. Hydraulic factors have the greatest influence on the nonlinear dynamic behavior of HGS. The maximum vibration amplitude of HGS in SLIP is increased by 70.46%, compared with that under stable operating conditions. This study provides reasonable reference for the analysis of the nonlinear dynamic behavior of HGS in SLIP under the multiple vibration sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.