The functionalities of the untethered miniature swimming robots significantly decrease as the robot size becomes smaller, due to limitations of feasible miniaturized on-board components. Here we propose an untethered jellyfish-inspired soft millirobot that could realize multiple functionalities in moderate Reynolds number by producing diverse controlled fluidic flows around its body using its magnetic composite elastomer lappets, which are actuated by an external oscillating magnetic field. We particularly investigate the interaction between the robot’s soft body and incurred fluidic flows due to the robot’s body motion, and utilize such physical interaction to achieve different predation-inspired object manipulation tasks. The proposed lappet kinematics can inspire other existing jellyfish-like robots to achieve similar functionalities at the same length and time scale. Moreover, the robotic platform could be used to study the impacts of the morphology and kinematics changing in ephyra jellyfish.
Coordinated nonreciprocal dynamics in biological cilia is essential to many living systems, where the emergentmetachronal waves of cilia have been hypothesized to enhance net fluid flows at low Reynolds numbers (Re). Experimental investigation of this hypothesis is critical but remains challenging. Here, we report soft miniature devices with both ciliary nonreciprocal motion and metachronal coordination and use them to investigate the quantitative relationship between metachronal coordination and the induced fluid flow. We found that only antiplectic metachronal waves with specific wave vectors could enhance fluid flows compared with the synchronized case. These findings further enable various bioinspired cilia arrays with unique functionalities of pumping and mixing viscous synthetic and biological complex fluids at low Re. Our design method and developed soft miniature devices provide unprecedented opportunities for studying ciliary biomechanics and creating cilia-inspired wireless microfluidic pumping, object manipulation and lab- and organ-on-a-chip devices, mobile microrobots, and bioengineering systems.
Small-scale soft-bodied machines that respond to externally applied magnetic field have attracted wide research interest because of their unique capabilities and promising potential in a variety of fields, especially for biomedical applications. When the size of such machines approach the sub-millimeter scale, their designs and functionalities are severely constrained by the available fabrication methods, which only work with limited materials, geometries, and magnetization profiles. To free such constraints, here, we propose a bottom-up assembly-based 3D microfabrication approach to create complex 3D miniature wireless magnetic soft machines at the milli- and sub-millimeter scale with arbitrary multimaterial compositions, arbitrary 3D geometries, and arbitrary programmable 3D magnetization profiles at high spatial resolution. This approach helps us concurrently realize diverse characteristics on the machines, including programmable shape morphing, negative Poisson’s ratio, complex stiffness distribution, directional joint bending, and remagnetization for shape reconfiguration. It enlarges the design space and enables biomedical device-related functionalities that are previously difficult to achieve, including peristaltic pumping of biological fluids and transport of solid objects, active targeted cargo transport and delivery, liquid biopsy, and reversible surface anchoring in tortuous tubular environments withstanding fluid flows, all at the sub-millimeter scale. This work improves the achievable complexity of 3D magnetic soft machines and boosts their future capabilities for applications in robotics and biomedical engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.