False data injection (FDI) attack is a hot topic in cyber-physical systems (CPSs). Attackers inject bad data into sensors or return false data to the controller to cause the inaccurate state estimation. Although there exists many detection approaches, such as bad data detector (BDD), sequence pattern mining, and machine learning methods, a smart attacker still can inject perfectly false data to go undetected. In this paper, we focus on the advanced false data injection (AFDI) attack and its detection method. An AFDI attack refers to the attack where a malicious entity accurately and successively changes sensory data, making the normal system state continuously evaluated as other legal system states, causing wrong outflow of controllers. The attack can lead to an automatic and long-term system failure/performance degradation. We first depict the AFDI attack model and analyze limitations of existing detectors for detecting AFDI. Second, we develop an approach based on machine learning, which utilizes the k-Nearest Neighbor (KNN) technique and heterogeneous data including sensory data and system commands to implement a classifier for detecting AFDI attacks. Finally, simulation experiments are given to demonstrate AFDI attack impact and the effectiveness of the proposed method for detecting AFDI attacks.
Previous studies have demonstrated that false commands can cause severe damage to large-scale cyber-physical systems (CPSs). We focus on a kind of threat called false sequential command attack, with which attackers can generate false sequential commands, resulting in the illegal control of the physical process. We present a feasible attack model. Attackers delay the disaggregation of former commands by manipulating maliciously sub-controllers. Simultaneously, bad feedback data is injected to defeat the controller to issue latter commands. Thus, false command sequence is executed and the disruption of physical process can be obtained. It is also difficult for the detector to identify such attacks as injecting bad data. We also discuss other possible attack paths and analyze the corresponding disadvantages. Compared with other paths, the proposed model is more feasible and has more difficulties to be detected. A case study is given to validate the feasibility and effectiveness of proposed false sequential command attack model. Finally, we discuss the possible countermeasure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.