To realize highly efficient in situ release of hydrogen energy from methanol reforming at lower operation temperature, the introduction of solar energy can effectively activate the methanol and significantly reduce activation energy of reaction. Herein, the hierarchical integration of photoactive Cu2O/Cu7S4 core‐shell nanospheres stabilized by MIL‐101(Cr) support for H2 evolution from photothermal‐driven aqueous phase reforming of methanol afforded nearly sixfold enhanced performance compared with thermocatalytic process. Impressively, the photothermal effect conferred the Cu2O/Cu7S4@MIL‐101(Cr) with unprecedented activity at low temperature subside to 100°C and accelerated the activation of water and methanol with distinctly decreased activation energy from 103.9 to 66.6 kJ·mol−1. Meanwhile, the enhanced catalyst stability and facilitated charge separation between Cu2O/Cu7S4 and MIL‐101(Cr) also contribute to the extraordinary photothermal‐enhanced H2 evolution with an overall turnover number of up to 14,266 in 60 h (apparent quantum efficiency of 25.08% at 365 nm), almost 10,000 times higher than that of Cu2O/Cu7S4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.