As one of the new intelligent materials, controllable bionic adhesive materials have great application prospects in many fields, such as wearable electronic devices, wall climbing robot systems, and biomedical engineering. Inspired by the microstructure of the newt pad’s surface, this paper reports a bionic adhesive surface material with controllable adhesion on dry, wet acrylic, and iron sheet surfaces. The material is prepared by mixing the PDMS matrix with micron carbonyl iron powders (CIPs) and then pouring the mixture into a female mold prepared by Photo-curing 3D Printing for curing. As the mold interior is designed with a two-level microstructure array, the material’s surface not only coated a regular hexagonal column array with a side length of 250 μm and a height of 100 μm but also covered seven dome structures with a diameter of 70 μm on each column. In what follows, the adhesion force of the proposed materials contacted three different surfaces are tested with/without magnetic fields. The experimental results show that the MAEs covered with two-level bionic structures(2L-MAE) reported in this paper exhibit a stronger initial adhesion in the three types of surfaces compared to the normal one. Besides, we also found that the magnetic field will noticeably affect their adhesion performance. Generally, the 2L-MAE’s adhesion will increase with the external magnetic field. When the contact surface is an iron sheet, the material adhesion will be reduced by the magnetic field.
This paper presents a cost-optimized Energy Management System (EMS) algorithm developed for Singapore Palau Ubin Microgrid islanded mode operation. The microgrid comprises two PV MPPT DC/DC inverters, one battery DC/DC converter, one grid-forming DC/AC inverter, one diesel generator (DG), and a few distributed loads. The proposed microgrid EMS utilizes the PV irradiation profile and the load profile to distribute the power between DG and the battery storage system to meet the load demand at a minimal cost. The OPAL-RT real-time simulation is implemented to validate the optimized microgrid EMS power distribution. The real-time simulation results prove that the battery power profile matches with EMS calculation results even though the battery power reference cannot be controlled directly in the hybrid DC/AC microgrid. The stable transient performance is achieved in the microgrid real-time simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.