It is crucial to implement an effective and accurate fault diagnosis of a gearbox for mechanical systems. However, being composed of many mechanical parts, a gearbox has a variety of failure modes resulting in the difficulty of accurate fault diagnosis. Moreover, it is easy to obtain raw vibration signals from real gearbox applications, but it requires significant costs to label them, especially for multi-fault modes. These issues challenge the traditional supervised learning methods of fault diagnosis. To solve these problems, we develop an active learning strategy based on uncertainty and complexity. Therefore, a new diagnostic method for a gearbox is proposed based on the present active learning, empirical mode decomposition-singular value decomposition (EMD-SVD) and random forests (RF). First, the EMD-SVD is used to obtain feature vectors from raw signals. Second, the proposed active learning scheme selects the most valuable unlabeled samples, which are then labeled and added to the training data set. Finally, the RF, trained by the new training data, is employed to recognize the fault modes of a gearbox. Two cases are studied based on experimental gearbox fault diagnostic data, and a supervised learning method, as well as other active learning methods, are compared. The results show that the proposed method outperforms the two common types of methods, thus validating its effectiveness and superiority. INDEX TERMS Active learning, gearbox fault diagnosis, uncertainty and complexity, supervised learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.