The uncertainty of wind farm power and load both have a certain impact on the economic dispatch of the power system. First, this study deals with the fuzzy processing of power prediction error and load forecasting error of wind farms based on fuzzy random theory. On this basis, a multi-objective fuzzy stochastic dispatch model of a power system with flexible load is established under the carbon trading mechanism. And, the nonlinear cost of flexible load response and the cost of carbon emission compensation is introduced to the multi-objective function of the model. In addition, the fuzzy chance constraint of the spinning reserve is added to the constraint conditions. By introducing the variable, the fuzzy random dispatch model is transformed into a clear equivalent model. Finally, the discrete bacterial colony chemotaxis algorithm is used to process the model, and the optimal solution to the multi-objective function is obtained by a compromise strategy based on a small degree of satisfaction. In the simulation, a classic IEEE10 system and a wind farm are taken as examples. The results show that compared with the other three traditional dispatch models, the total power generation cost
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.