The local climate zones (LCZs) system, a standard framework characterizing urban form and environment, effectively promotes urban remote sensing research, especially urban heat island (UHI) research. However, whether mapping with objects is more advantageous than with pixels in LCZ mapping remains uncertain. This study aims to compare object-based and pixel-based LCZ mapping with multi-source data in detail. By comparing the object-based method with the pixel-based method in 50 and 100 m, respectively, we found that the object-based method performed better with overall accuracy (OA) higher at approximately 2% and 5%, respectively. In per-class analysis, the object-based method showed a clear advantage in the land cover types and competitive performance in built types while LCZ2, LCZ5, and LCZ6 performed better with the pixel-based method in 50 m. We further employed correlation-based feature selection (CFS) to evaluate feature importance in the object-based paradigm, finding that building height (BH), sky view factor (SVF), building surface fraction (BSF), permeable surface fraction (PSF), and land use exhibited high selection frequency while image bands were scarcely selected. In summary, we concluded that the object-based method is capable of LCZ mapping and performs better than the pixel-based method under the same training condition unless in under-segmentation cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.