Background: Increasing evidences have underlined the importance of long non-coding RNAs (lncRNAs) in human malignancies. LINC00958 has been found involved in some cancers. However, the underlying mechanical performance of LINC00958 in lung adenocarcinoma (LAD) has not been explored yet. Methods: The expression of relevant mRNA and protein were measured by qRT-PCR and western blot assays. EdU, colony formation, TUNEL and transwell assays were performed to investigate the function of LINC00958 on LAD progression. Luciferase reporter, RNA pull down and RIP assays were conducted to investigate the molecular mechanism of relevant RNAs. Results: LINC00958 was found notably overexpressed in LAD, which was associated with the stimulation of its promoter activity induced by SP1. LINC00958 depletion dramatically inhibited LAD cell proliferation, migration and invasion capacities by acting as a miR-625-5p sponge. MiR-625-5p curbed LAD progression via targeting CPSF7 and down-regulating its expression. Mechanically, LINC00958 was identified as a competing endogenous RNA (ceRNA) and positively regulated the expression of CPSF7 via sponging miR-625-5p. Conclusions: LINC00958 might drive LAD progression via mediating miR-625-5p/CPSF7 axis, indicating the potential of targeting LINC00958 for the treatment of LAD.
Background Airborne fine particulate matter (PM2.5) has been associated with lung cancer development and progression in never smokers. However, the molecular mechanisms underlying PM2.5-induced lung cancer remain largely unknown. The aim of this study was to explore the mechanisms by which PM2.5 regulated the carcinogenesis of non-small cell lung cancer (NSCLC). Methods Paralleled ribosome sequencing (Ribo-seq) and RNA sequencing (RNA-seq) were performed to identify PM2.5-associated genes for further study. Quantitative real time-PCR (qRT-PCR), Western blot, and immunohistochemistry (IHC) were used to determine mRNA and protein expression levels in tissues and cells. The biological roles of PM2.5 and PM2.5-dysregulated gene were assessed by gain- and loss-of-function experiments, biochemical analyses, and Seahorse XF glycolysis stress assays. Human tissue microarray analysis and 18F-FDG PET/CT scans in patients with NSCLC were used to verify the experimental findings. Polysome fractionation experiments, chromatin immunoprecipitation (ChIP), and dual-luciferase reporter assay were implemented to explore the molecular mechanisms. Results We found that PM2.5 induced a translation shift towards glycolysis pathway genes and increased glycolysis metabolism, as evidenced by increased L-lactate and pyruvate concentrations or higher extracellular acidification rate (ECAR) in vitro and in vivo. Particularly, PM2.5 enhanced the expression of glycolytic gene DLAT, which promoted glycolysis but suppressed acetyl-CoA production and enhanced the malignancy of NSCLC cells. Clinically, high expression of DLAT was positively associated with tumor size, poorer prognosis, and SUVmax values of 18F-FDG-PET/CT scans in patients with NSCLC. Mechanistically, PM2.5 activated eIF4E, consequently up-regulating the expression level of DLAT in polysomes. PM2.5 also stimulated transcription factor Sp1, which further augmented transcription activity of DLAT promoter. Conclusions This study demonstrated that PM2.5-activated overexpression of DLAT and enhancement in glycolysis metabolism contributed to the tumorigenesis of NSCLC, suggesting that DLAT-associated pathway may be a therapeutic target for NSCLC.
Connexins (Cx) form gap junctions (GJ) and allow for intercellular communication. However, these proteins also modulate gene expression, growth, and cell migration. The downregulation of Cx43 impairs endothelial cell migration and angiogenetic potential. Conversely, endothelial Cx43 expression is upregulated in an in vivo angiogenesis model relying on hemodynamic forces. We studied the effects of Cx43 expression on tube formation and proliferation in HUVECs and examined its dependency on GJ communication. Expectedly, intercellular communication assessed by dye transfer was linked to Cx43 expression levels in HUVECs and was sensitive to a GJ blockade by the Cx43 mimetic peptide Gap27. The proliferation of HUVECs was not affected by Cx43 overexpression using Cx43 cDNA transfection, siRNA-mediated knockdown of Cx43, or the inhibition of GJ compared to the controls (transfection of an empty vector, scrambled siRNA, and the solvent). In contrast, endothelial tube and sprout formation in HUVECs was minimized after Cx43 knockdown and significantly enhanced after Cx43 overexpression. This was not affected by a GJ blockade (Gap27). We conclude that Cx43 expression positively modulates the angiogenic potential of endothelial cells independent of GJ communication. Since proliferation remained unaffected, we suggest that Cx43 protein may modulate endothelial cell migration, thereby supporting angiogenesis. The modulation of Cx43 expression may represent an exploitable principle for angiogenesis induction in clinical therapy.
connexins (cxs) play key roles in cellular communication. By facilitating metabolite exchange or interfering with distinct signaling pathways, cxs affect cell homeostasis, proliferation, and differentiation. Variations in the activity and expression of cxs have been linked to numerous clinical conditions including carcinomas, cardiac disorders, and wound healing. Recent discoveries on the association between cxs and angiogenesis have sparked interest in cx-mediated angiogenesis due to its essential functions in tissue formation, wound repair, tumor growth, and metastasis. It is now widely recognized that understanding the association between cxs and angiogenesis may aid in the development of new targeted therapies for angiogenic diseases. The aim of the present review was to provide a comprehensive overview of cxs and cx-mediated angiogenesis, with a focus on therapeutic implications. Contents1. Introduction 2. Methodology 3. cxs, diseases and potential therapies 4. conclusions and future directions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.