Tourette syndrome (TS) is characterized by tics, sensorimotor gating deficiencies, and abnormalities of cortico-basal ganglia circuits. A mutation in histidine decarboxylase (Hdc), the key enzyme for the biosynthesis of histamine (HA), has been implicated as a rare genetic cause. Hdc knockout mice exhibited potentiated tic-like stereotypies, recapitulating core phenomenology of TS; these were mitigated by the dopamine D2 antagonist haloperidol, a proven pharmacotherapy, and by HA infusion into the brain. Prepulse inhibition was impaired in both mice and humans carrying Hdc mutations. HA infusion reduced striatal dopamine (DA) levels; in Hdc knockout mice, striatal DA was increased and the DA-regulated immediate early gene Fos was upregulated. Dopamine D2/D3 receptor binding was altered both in mice and in humans carrying the Hdc mutation. These data confirm HDC deficiency as a rare cause of TS and identify histamine-dopamine interactions in the basal ganglia as an important locus of pathology.
There is compelling clinical literature implicating a role for cytokines in the pathophysiology of major depressive disorder (MDD). Interleukin-6 (IL-6) and interleukin-1β (IL-1β) are pleiotropic inflammatory cytokines that have been reported to be elevated in patients with MDD. The present studies were undertaken to investigate the relationship between IL-6 and IL-1β in animal models of depressive-like behavior. Analysis of brain tissue homogenates in the cortex of rats subjected to chronic stress paradigms revealed elevated levels of IL-6 protein in the absence of elevations in IL-1β. Central administration of recombinant mouse IL-6 produced depressive-like phenotypes in mice, which were not accompanied by IL-1β-induced increases in the brain tissue or IL-1β-related sickness behavior typical of a general central nervous system inflammatory response. Systemic administration of fluoxetine in the presence of centrally administered IL-6 failed to produce the expected antidepressant-like response in mice relative to sham-infused controls. Further, administration of fluoxetine to mice with endogenous overexpression of brain IL-6 (MRL/MpJ-FasLPR/LPR (LPR mice)) failed to produce the expected antidepressant-like effect relative to fluoxetine-treated control mice (MRL/MpJ+/+). Interestingly, blockade of IL-6 trans-signaling by coadministration of a gp130/Fc monomer or an anti-mouse IL-6 antibody with IL-6 prevented the IL-6-induced increases in immobility time as well as attenuated IL-6-induced increases of protein in the cortex. Taken together, these data indicate that elevations in IL-6 may have a pathophysiological role underlying depression and more specifically resistance to current classes of antidepressant medications and suggest that modulation of the IL-6 signaling pathway may have therapeutic potential for treatment-resistant depression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.