JC. Atrophy, but not necrosis, in rabbit skeletal muscle denervated for periods up to one year. Am J Physiol Cell Physiol 292: C440 -C451, 2007; doi:10.1152/ajpcell.00085.2006.-Our understanding of the effects of long-term denervation on skeletal muscle is heavily influenced by an extensive literature based on the rat. We have studied physiological and morphological changes in an alternative model, the rabbit. In adult rabbits, tibialis anterior muscles were denervated unilaterally by selective section of motor branches of the common peroneal nerve and examined after 10, 36, or 51 wk. Denervation reduced muscle mass and cross-sectional area by 50 -60% and tetanic force by 75%, with no apparent reduction in specific force (force per cross-sectional area of muscle fibers). The loss of mass was associated with atrophy of fast fibers and an increase in fibrous and adipose connective tissue; the diameter of slow fibers was preserved. Within fibers, electron microscopy revealed signs of ultrastructural disorganization of sarcomeres and tubular systems. This, rather than the observed transformation of fiber type from IIx to IIa, was probably responsible for the slow contractile speed of the muscles. The muscle groups denervated for 10, 36, or 51 wk showed no significant differences. At no stage was there any evidence of necrosis or regeneration, and the total number of fibers remained constant. These changes are in marked contrast to the necrotic degeneration and progressive decline in mass and force that have previously been found in long-term denervated rat muscles. The rabbit may be a better choice for a model of the effects of denervation in humans, at least up to 1 yr after lesion.force; shortening velocity; electron microscopy; histochemistry MUCH OF OUR KNOWLEDGE of the effects of long-term denervation of mammalian skeletal muscle comes from experimental studies of total sciatic section in the rat (7,32,54). The mass of the affected muscles falls rapidly within 5-7 days of axotomy (11,18,22,25,55,57,58) and declines further to 30 -50% of control weight in succeeding weeks (1,5,11,14,23,41,60). After several months, muscle weight stabilizes at ϳ5-20% of control (1,13,45).Within the muscles, individual fibers show a reduction of ϳ70% in cross-sectional area (CSA) over a period of months (5,14,21,37), and over 90% (1,21,45) in the longer term. Initially, fast (type II) fibers are more susceptible to atrophy than slow (type I) fibers (5,7,32,38,48,54,59), but over more prolonged periods the fiber types atrophy to a similar extent (6, 54). Corresponding to this reduction in fiber CSA, there is a striking and progressive increase in interstitial collagen and fat (32). At the ultrastructural level, atrophic muscle fibers show evidence of disorganization, including loss or misalignment of sarcomeres, dissociation of the T system and sarcoplasmic reticulum (SR), and changes in the sarcomeric location of mitochondria (32, 51, 52).The major physiological correlate of these morphological changes is a loss of force-generati...
Muscular atrophy due to denervation can be substantially reversed by direct electrical stimulation. Some muscle properties are, however, resistant to change. Using a rabbit model of established denervation atrophy, we investigated whether the extent of restoration would vary with the stimulation protocol. Five patterns, delivering 24,000-480,000 impulses/day, were applied for 6 or 10 weeks. The wet weight, cross-sectional area, tetanic tension, shortening velocity, and power of denervated muscles subjected to stimulation all increased significantly. The fibers were larger and more closely packed and there was no evidence of necrosis. There was a small increase in excitability. Isometric twitch kinetics remained slow and fatigue resistance did not improve. The actual pattern of stimulation had no influence on any of these findings. The results, interpreted in the context of ultrastructural changes and an ongoing clinical study, reaffirm the clinical value of introducing stimulation during the initial non-degenerative phase. They indicate that there would be little therapeutic benefit in adopting regimes more energetically demanding than those in current use, and that the focus should now shift to protocols that represent the least intrusion into activities of daily living.
Denervating injuries result in flaccid paralysis and severe atrophy of the affected muscles. This work reviews the potential for functional restoration of such muscles by electrical stimulation, focusing on the basic scientific issues.
We investigated the extent to which activity induced by chronic electrical stimulation could restore the mass and contractile function of rabbit tibialis anterior (TA) muscles that had undergone atrophy as a result of prolonged denervation. Denervation was carried out by selectively interrupting the motor nerve branches to the ankle dorsiflexors in one hind limb. Stimulators were implanted, with electrodes on the superficial and deep surfaces of the denervated TA muscle. Ten weeks later, the mass and mid-belly cross-sectional area (CSA) of TA muscles subjected to denervation alone had fallen to approximately 40% of normal. At this stage, stimulators in the other rabbits were activated for 1 h/day to deliver 20-ms rectangular bipolar constant-current pulses of 4 mA amplitude at 20 Hz with a duty cycle of 1s ON/2s OFF, a total of 24,000 impulses/day. The animals were examined after a further 2, 6 or 10 weeks. Stimulation restored the wet weight of the denervated muscles to values not significantly different to those of normal, innervated controls. It increased CSA from 39% to 66% of normal, and there was a commensurate increase in maximum isometric tetanic force from 27% to 50% of normal. Light and electron microscopic examination revealed a marked improvement in the size, packing, and internal organization of the stimulated-denervated muscle fibres, suggestive of an ongoing process of restoration. Excitability, contractile speed, power, and fatigue resistance had not, however, been restored to normal levels after 10 weeks of stimulation. Similar results were found for muscles that had been denervated for 39 weeks and then stimulated for 12 weeks. The study demonstrates worthwhile benefits of long-term electrical stimulation in the treatment of established denervation atrophy.
Mechanosensitive ion channels are crucial for normal cell function and facilitate physiological function, such as blood pressure regulation. So far little is known about the molecular mechanisms of how channels sense mechanical force. Canonical vertebrate epithelial Na+channel (ENaC) formed by α-, β-, and γ-subunits is a shear force (SF) sensor and a member of the ENaC/degenerin protein family. ENaC activity in epithelial cells contributes to electrolyte/fluid-homeostasis and blood pressure regulation. Furthermore, ENaC in endothelial cells mediates vascular responsiveness to regulate blood pressure. Here, we provide evidence that ENaC’s ability to mediate SF responsiveness relies on the “force-from-filament” principle involving extracellular tethers and the extracellular matrix (ECM). Two glycosylated asparagines, respectively theirN-glycans localized in the palm and knuckle domains of αENaC, were identified as potential tethers. Decreased SF-induced ENaC currents were observed following removal of the ECM/glycocalyx, replacement of these glycosylated asparagines, or removal ofN-glycans. Endothelial-specific overexpression of αENaC in mice induced hypertension. In contrast, expression of αENaC lacking these glycosylated asparagines blunted this effect. In summary, glycosylated asparagines in the palm and knuckle domains of αENaC are important for SF sensing. In accordance with the force-from-filament principle, they may provide a connection to the ECM that facilitates vascular responsiveness contributing to blood pressure regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.