The computational power of networks of small resource-limited mobile agents is explored. Two new models of computation based on pairwise interactions of finite-state agents in populations of finite but unbounded size are defined. With a fairness condition on interactions, the concept of stable computation of a function or predicate is defined. Protocols are given that stably compute any predicate in the class definable by formulas of Presburger arithmetic, which includes Boolean combinations of threshold-k, majority, and equivalence modulo m. All stably computable predicates are shown to be in NL. Assuming uniform random sampling of interacting pairs yields the model of conjugating automata. Any counter machine with O(1) counters of capacity O(n) can be simulated with high probability by a conjugating automaton in a population of size n. All predicates computable with high probability in this model are shown to be in P; they can also be computed by a randomized logspace machine in exponential time. Several open problems and promising future directions are discussed.
We explore the computational power of networks of small resource-limited mobile agents. We define two new models of computation based on pairwise interactions of finite-state agents in populations of finite but unbounded size. With a fairness condition on interactions, we define the concept of stable computation of a function or predicate, and give protocols that stably compute functions in a class including Boolean combinations of threshold-k, parity, majority, and simple arithmetic. We prove that all stably computable predicates are in NL. With uniform random sampling of pairs to interact, we define the model of conjugating automata and show that any counter machine with O(1) counters of capacity O(n) can be simulated with high probability by a protocol in a population of size n. We prove that all predicates computable with high probability in this model are in P ∩ RL. Several open problems and promising future directions are discussed.Abstract Devices]: Modes of Computation-parallelism and concurrency,
We consider the problem of designing an overlay network and routing mechanism that permits finding resources efficiently in a peer-to-peer system. We argue that many existing approaches to this problem can be modeled as the construction of a random graph embedded in a metric space whose points represent resource identifiers, where the probability of a connection between two nodes depends only on the distance between them in the metric space. We study the performance of a peer-to-peer system where nodes are embedded at grid points in a simple metric space: a one-dimensional real line. We prove upper and lower bounds on the message complexity of locating particular resources in such a system, under a variety of assumptions about failures of either nodes or the connections between them. Our lower bounds in particular show that the use of inverse power-law distributions in routing, as suggested by Kleinberg [5], is close to optimal. We also give heuristics to efficiently maintain a network supporting efficient routing as nodes enter and leave the system. Finally, we give some experimental results that suggest promising directions for future work.
We consider the problem of designing an overlay network and routing mechanism that permits finding resources efficiently in a peer-to-peer system. We argue that many existing approaches to this problem can be modeled as the construction of a random graph embedded in a metric space whose points represent resource identifiers, where the probability of a connection between two nodes depends only on the distance between them in the metric space. We study the performance of a peer-to-peer system where nodes are embedded at grid points in a simple metric space: a one-dimensional real line. We prove upper and lower bounds on the message complexity of locating particular resources in such a system, under a variety of assumptions about failures of either nodes or the connections between them. Our lower bounds in particular show that the use of inverse power-law distributions in routing, as suggested by Kleinberg [5], is close to optimal. We also give efficient heuristics to dynamically maintain such a system as new nodes arrive and old nodes depart. Finally, we give experimental results that suggest promising directions for future work. * This is an extended version of the
Trust is an important aspect of the design and analysis of secure distributed systems. It is often used informally to designate those portions of a system that must function correctly in order to achieve the desired outcome. But it is a notoriously diffcult notion to formalize. What are the properties of trust? How is it learned, propagated, and utilized successfully? How can it be modeled? How can a trust model be used to derive protocols that are effcient and reliable when employed in today's expansive networks? Past work has been concerned with only a few of these issues, without concentrating on the need for a comprehensive approach to trust modeling.In this paper, we take a first step in that direction by studying an artificial community of agents that uses a notion of trust to succeed in a game against nature. The model is simple enough to analyze and simulate, but also rich enough to exhibit phenomena of real-life interactive communities. The model requires agents to make decisions. To do well, the agents are informed by knowledge gained from their own past experience as well as from the experience of other agents. Communication among agents allows knowledge to propagate faster through the network, which in turn can allow for a more successful community. We analyze the model from both a theoretical and an experimental point of view.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.