Quantifying the effects of ocean acidification requires understanding the skeletal carbonate mineralogy in living marine organisms. X-ray diffractometry (XRD) is the simplest and most commonly used technique for determining this. Samples being analyzed by XRD are typically pretreated to remove organic material prior to grinding to a crystallite powder. This pretreatment was traditionally performed as organic material may obscure the mineral peaks on XRD traces. This study compared controls with no pretreatment with the most common pretreatment methods: roasting, immersion in chlorine bleach, and immersion in hydrogen peroxide. The latter two methods were performed at two strengths and two durations. We test the hypothesis that bleaching and/or roasting of skeletal carbonate to remove organic material does not affect the mineralogy of temperate skeletal carbonate at a scale detectable by XRD. This was done with biogenic skeletal carbonate from temperate marine environments around southern New Zealand. Specimens included 5 species of bivalve mollusks, 4 species of bryozoans, 2 species of barnacles, as well as 1 species each of serpulid worm, echinoid, gastropod mollusk, brachiopod, and coralline algae. Comparison to the untreated control showed that all pretreatments removed some organic matter and that the presence of organic matter in temperate skeletal carbonate does not affect the ability to qualitatively interpret mineralogy or semiquantitatively measure mineralogy using XRD. Given that pretreatment does not appear to be necessary and that some methods at least can cause unacceptable changes in mineralogy, we recommend that pretreatment for the removal of organic material be abandoned.
Tissue from both solitary and aggregated serpulids Galeolaria hystrix and Spirobranchus cariniferus from southern New Zealand was sequenced using 18S, histone H3 and cytochrome b in order to determine whether these differences in ecology and lifestyle reflect the existence of cryptic species. In both cases, all 3 phylogenetic trees unequivocally combined solitary and aggregated individuals into 2 monophyletic groups corresponding to the nominal species. Some combination of larval behaviour, adult attractants and biotic/physical environmental factors are likely to be the drivers of reef formation in these serpulid worms. A previously sequenced Australian specimen of G. hystrix is not in the same clade as the New Zealand samples and requires re-investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.