The three-factor kinetic equation of catalyst deactivation was obtained in terms of apparent kinetic parameters. The three factors correspond to the main cycle with a linear, detailed mechanism regarding the catalytic intermediates, a cycle of reversible deactivation, and a stage of irreversible deactivation (aging), respectively. The rate of the main cycle is obtained for the fresh catalyst under a quasi-steady-state assumption. The phenomena of reversible and irreversible deactivation are presented as special separate factors (hierarchical separation). In this case, the reversible deactivation factor is a function of the kinetic apparent parameters of the reversible deactivation and of those of the main cycle. The irreversible deactivation factor is a function of the apparent kinetic parameters of the main cycle, of the reversible deactivation, and of the irreversible deactivation. The conditions of such separability are found. The obtained equation is applied successfully to describe the literature data on the reversible catalyst deactivation processes in the dehydration of acetaldehyde over TiO2 anatase and in crotonaldehyde hydrogenation on supported metal catalysts.
New theoretical relationships for a complex catalytic reaction accompanied by deactivation are obtained, using as an example the two-step catalytic mechanism (Temkin–Boudart mechanism) with irreversible reactions and irreversible deactivation. In the domain of small concentrations, Alim=NSk1CAkd, where Alim is the limit of the integral consumption of the gas substance, NS is the number of active sites per unit of catalyst surface; k1 and kd, are kinetic coefficients which relate to two reactions which compete for the free active site Z. CA is the gas concentration. One reaction belongs to the catalytic cycle. The other reaction with kinetic coefficient kd is irreversible deactivation. The catalyst lifetime, τcat=1CZ′1kd, where CZ′ is the dimensionless steady-state concentration of free active sites. The main conclusion was formulated as follows: the catalyst lifetime can be enhanced by decreasing the steady-state (quasi-steady-state) concentration of free active sites. In some domains of parameters, it can also be achieved by increasing the steady-state (quasi-steady-state) reaction rate of the fresh catalyst. We can express this conclusion as follows: under some conditions, an elevated fresh catalyst activity protects the catalyst from deactivation. These theoretical results are illustrated with the use of computer simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.