Sulfur dioxide (SO2) is a toxic gas at low parts-per-million (ppm) concentrations, with a permissible exposure limit (PEL) of 2 ppm. Its detection is mandatory, particularly in the fields of occupational health and safety, and environmental pollution. In this work, ppm concentration detection of sulfur dioxide was performed in six room temperature ionic liquids (RTILs), as well as on two different electrode materialsplatinum and goldand with two different electrode geometries, i.e. macro thin-film electrodes (TFEs) and microarray thin-film electrodes (MATFEs).Calibration curves were established for 10-200 ppm SO2 using cyclic voltammetry to determine the optimum combination of RTIL, electrode surface and geometry for the sensing. The RTIL 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonium)imide ([C4mpyrr][NTf2]) with a platinum thin-film electrode was found to give the best response due to the relatively low viscosity of the RTIL combined with the high sensitivity and a clean blank response.On MATFEs, deposited sulfur particlesconfirmed using scanning electron microscopy (SEM) coupled to an energy dispersive spectrometer (EDS)were found to passivate and block some of the microholes, leading to unstable longterm chronoamperometric responses. To the best of our knowledge, this is the first observation of sulfur deposition from SO2 reduction in aprotic ionic liquids. Consecutive additions of 2 ppm SO2 were studied in [C4mpyrr][NTf2] on a TFE using long-term chronoamperometry, showing excellent reproducibility upon successive additions. This demonstrates that small volumes of RTILs can be combined with miniaturized, low-cost TFEs and applied for the reliable detection of sulfur dioxide gas at concentrations lower than the permissible exposure limit of 2 ppm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.