The heteropolymer lignin represents an untapped resource for production of renewable aromatic chemicals, if efficient depolymerisation methods can be developed. In this work, the metabolic pathways in Rhodococcus jostii RHA1 for degradation of aromatic lignin breakdown products are re-routed, in order to generate an aromatic dicarboxylic acid product that could be used for bioplastic synthesis. Protocatechuic acid is normally metabolised via ortho-cleavage to the -keto-adipate pathway. Insertion of recombinant genes for protocatechuate 4,5-dioxygenase or protocatechuate 2,3-dioxygenase into R. jostii RHA1, followed by ammonia cyclisation of the extradiol cleavage products, generates pyridine 2,4-dicarboxylic acid or pyridine 2,5-dicarboxylic acid bioproducts in yields of 80-125 mg/L when grown on minimal media containing 1% wheat straw lignocellulose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.