Silence of FMR1 causes loss of fragile X mental retardation protein (FMRP) and dysregulated translation at synapses, resulting in the intellectual disability and autistic symptoms of fragile X syndrome (FXS). Synaptic dysfunction hypotheses for how intellectual disabilities like cognitive inflexibility arise in FXS predict impaired neural coding in the absence of FMRP. We tested the prediction by comparing hippocampus place cells in wild-type and FXS-model mice. Experience-driven CA1 synaptic function and synaptic plasticity changes are excessive in Fmr1-null mice, but CA1 place fields are normal. However, Fmr1-null discharge relationships to local field potential oscillations are abnormally weak, stereotyped, and homogeneous; also, discharge coordination within Fmr1-null place cell networks is weaker and less reliable than wild-type. Rather than disruption of single-cell neural codes, these findings point to invariant tuning of single-cell responses and inadequate discharge coordination within neural ensembles as a pathophysiological basis of cognitive inflexibility in FXS. VIDEO ABSTRACT.
Behavior is used to assess memory and cognitive deficits in animals like Fmr1-null mice that model Fragile X Syndrome, but behavior is a proxy for unknown neural events that define cognitive variables like recollection. We identified an electrophysiological signature of recollection in mouse dorsal Cornu Ammonis 1 (CA1) hippocampus. During a shocked-place avoidance task, slow gamma (SG) (30–50 Hz) dominates mid-frequency gamma (MG) (70–90 Hz) oscillations 2–3 s before successful avoidance, but not failures. Wild-type (WT) but not Fmr1-null mice rapidly adapt to relocating the shock; concurrently, SG/MG maxima (SGdom) decrease in WT but not in cognitively inflexible Fmr1-null mice. During SGdom, putative pyramidal cell ensembles represent distant locations; during place avoidance, these are avoided places. During shock relocation, WT ensembles represent distant locations near the currently correct shock zone, but Fmr1-null ensembles represent the formerly correct zone. These findings indicate that recollection occurs when CA1 SG dominates MG and that accurate recollection of inappropriate memories explains Fmr1-null cognitive inflexibility.
Behavior is used to assess memory and cognitive deficits in animals like Fmrl-null mice that model Fragile X Syndrome, but behavior is a proxy for unknown neural events that define cognitive variables like recollection. We identified an electrophysiological signature of recollection in mouse dorsal CA1 hippocampus. During a shocked-place avoidance task, slow gamma (SG: 30-50 Hz) dominates mid-frequency gamma (MG: 70-90 Hz) oscillations 2-3 seconds before successful avoidance, but not failures. Wild-type but not Fmrl-null mice rapidly adapt to relocating the shock; concurrently, SG/MG maxima (SGdominance) decrease in wild-type but not in cognitively inflexible Fmrl-null mice. During SGdominance, putative pyramidal cell ensembles represent distant locations; during place avoidance, these are avoided places. During shock relocation, wild-type ensembles represent distant locations near the currently-correct shock zone but Fmrl-null ensembles represent the formerly-correct zone. These findings indicate that recollection occurs when CA1 slow gamma dominates mid-frequency gamma, and that accurate recollection of inappropriate memories explains Fmrl-null cognitive inflexibility.
Mammalian external genitals show sexual dimorphism [1, 2] and can change size and shape upon sexual arousal. Genitals feature prominently in the oldest pieces of figural art [3] and phallic depictions of penises informed psychoanalytic thought about sexuality [4, 5]. Despite this longstanding interest, the neural representations of genitals are still poorly understood [6]. In somatosensory cortex specifically, many studies did not detect any cortical representation of genitals [7-9]. Studies in humans debate whether genitals are represented displaced below the foot of the cortical body map [10-12] or whether they are represented somatotopically [13-15]. We wondered what a high-resolution mapping of genital representations might tell us about the sexual differentiation of the mammalian brain. We identified genital responses in rat somatosensory cortex in a region previously assigned as arm/leg cortex. Genital responses were more common in males than in females. Despite such response dimorphism, we observed a stunning anatomical monomorphism of cortical penis and clitoris input maps revealed by cytochrome-oxidase-staining of cortical layer 4. Genital representations were somatotopic and bilaterally symmetric, and their relative size increased markedly during puberty. Size, shape, and erect posture give the cortical penis representation a phallic appearance pointing to a role in sexually aroused states. Cortical genital neurons showed unusual multi-body-part responses and sexually dimorphic receptive fields. Specifically, genital neurons were co-activated by distant body regions, which are touched during mounting in the respective sex. Genital maps indicate a deep homology of penis and clitoris representations in line with a fundamentally bi-sexual layout [16] of the vertebrate brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.