Mononuclear complexes [Re(bpym)(CO)(3)Cl] and [Pt(bpym)(CC-C(6)H(4)CF(3))(2)] (bpym = 2,2'-bipyrimidine), in which one of the bipyrimidine sites is vacant, have been used as "complex ligands" to prepare heterodinuclear d-f complexes in which a lanthanide tris(1,3-diketonate) unit is attached to the secondary bipyrimidine site to evaluate the ability of d-block chromophores to act as antennae for causing sensitized near-infrared (NIR) luminescence from adjacent lanthanide(III) centers. The two sets of complexes so prepared are [Re(CO)(3)Cl(mu-bpym)Ln(fod)(3)] (abbreviated as Re-Ln; where Ln = Yb, Nd, Er) and [(F(3)C-C(6)H(4)-CC)(2)Pt(mu-bpym)Ln(hfac)(3)] (abbreviated as Pt-Ln; where Ln = Nd, Gd). Members of both series have been structurally characterized; the metal-metal separation across the bipyrimidine bridge is approximately 6.3 A in each case. In these complexes, the (3)MLCT (MLCT = metal to ligand charge-transfer) luminescences of the mononuclear [Re(bpym)(CO)(3)Cl] and [Pt(bpym)(CC-C(6)H(4)CF(3))(2)] complexes are quenched by energy transfer to those lanthanides (Ln = Yb, Nd, Er) that have low-lying f-f states capable of NIR luminescence; as a result, sensitized NIR luminescence is seen from the lanthanide center following excitation of the d-block unit. In the solid state, quenching of the luminescence from the d-block chromophore is complete, indicating efficient d --> f energy transfer, as a result of the short metal-metal separation across the bipyrimidine bridge. In a CH(2)Cl(2) solution, partial dissociation of the dinuclear complexes into the mononuclear units occurs, with the result that some (3)MLCT luminescence is observed from mononuclear [Re(bpym)(CO)(3)Cl] or [Pt(bpym)(CC-C(6)H(4)CF(3))(2)] present in the equilibrium mixture. Solution UV-vis and luminescence titrations, carried out by the addition of portions of Ln(fod)(3)(H(2)O)(2) or Ln(hfac)(3)(H(2)O)(2) to the d-block complex ligands, indicate that binding of the lanthanide tris(1,3-diketonate) unit at the secondary bipyrimidine site to give the d-f dinuclear complexes occurs with an association constant of ca. 10(5) M(-)(1).
Reaction of the potentially bis-bidentate bridging ligand 3,6-bis(2-pyridyl)tetrazine (BPTZ) with various lanthanide complexes [Ln(tta) 3 (H 2 O) 2 ] [Htta = thenoyl(trifluoro)acetone; Ln = La, Nd, Gd, Er, Yb] in aqueous ethanol afforded the mononuclear complexes [Ln(tta) 3 (BPTZ)] (Ln = La, Nd) or the dinuclear complexes [{Ln(tta) 3 } 2 (µ-BPTZ)] (Ln = Gd, Er, Yb) in which one or two, respectively, lanthanide tris-diketonate {Ln(tta) 3 } units are bound to the N,N-bidentate compartments of BPTZ. Crystal structures of the dinuclear complexes [{Yb(tta) 3 } 2 (µ-BPTZ)]ؒCH 2 Cl 2 and [{Gd(tta) 3 } 2 (µ-BPTZ)]ؒ2CH 2 Cl 2 show that the metal centres have an approximately square-antiprismatic eightcoordinate geometry; there are close contacts above and below the plane of the BPTZ bridging ligand between peripheral trifluoromethyl groups from a tta ligand associated with each metal centre. It is not apparent why the larger lanthanides La and Nd only give a mononuclear complex whereas the smaller lanthanides Gd, Er and Yb give the dinuclear complex in each case. UV/Vis spectroscopic titrations of a solution of BPTZ in CH 2 Cl 2 with increasing amounts of [Ln(tta) 3 (H 2 O) 2 ] (Ln = La and Yb) show very similar behaviour, with stepwise binding constants K 1 and K 2 for association of the two {Ln(tta) 3 } units of ca. 10 6 M Ϫ1 and 10 5 M Ϫ1 ; allowing for the expected statistical factor of 4 there is an additional reduction in the value of K 2 compared to K 1 which may be associated with a steric interaction between the two {Ln(tta) 3 } units when the dinuclear complex forms. Steady-state and time-resolved luminescence studies on the complexes with Yb, Nd and Er, both in the solid state and CH 2 Cl 2 solution, show that near-IR luminescence on the microsecond timescale can be sensitised by irradiation either at 337 nm into the tta-based transition, or at 520 nm into the low-energy BPTZ-centred transition.
A series of dinuclear platinum(II)-lanthanide(iii) complexes has been prepared in which a square-planar Pt(II) unit, either [(PPh(3))(2)Pt(pdo)] (H(2)pdo=5,6-dihydroxyphenanthroline) or [Cl(2)Pt(dppz)] [dppz=2,3-bis(2-pyridyl)pyrazine], is connected to a Ln(dik)(3) unit ("dik"=a 1,3-diketonate ligand). The mononuclear complexes [(PPh(3))(2)Pt(pdo)] and [Cl(2)Pt(dppz)] both have external, vacant N,N-donor diimine-type binding sites that react with various [Ln(dik)(3)(H(2)O)(2)] units to give complexes [(PPh(3))(2)Pt(micro-pdo)Ln(tta)(3)] (series A; Htta=thenoyltrifluoroacetone), [Cl(2)Pt(micro-dppz)Ln(tta)(3)] (series B); and [Cl(2)Pt(micro-dppz)Ln(btfa)(3)] (series C; Hbtfa=benzoyltrifluoroacetone); in all of these the lanthanide centres are eight-coordinate. The lanthanides used exhibit near-infrared luminescence (Nd, Yb, Er). Crystal structures of members of each series are described. In all complexes, excitation into the Pt-centred absorption band (at 520 nm for series A complexes; 440 nm for series B and C complexes) results in characteristic near-IR luminescence from the Nd, Yb or Er centres in both the solid state and in CH(2)Cl(2), following energy-transfer from the Pt antenna chromophore. This work demonstrates how d-block-derived chromophores, with their intense and tunable electronic transitions, can be used as sensitisers to achieve near-infrared luminescence from lanthanides in suitably designed heterodinuclear complexes based on simple bridging ligands.
N,N'-Chelating ligands based on the 2-(2-pyridyl)benzimidazole (PB) core have been prepared with a range of substituents (phenyl, pentafluorophenyl, naphthyl, anthracenyl, pyrenyl) connected to the periphery via alkylation of the benzimidazolyl unit at one of the N atoms. These PB ligands have been used to prepare a series of complexes of the type [Re(PB)(CO)(3)Cl], [Pt(PB)(CCR)(2)](where -CCR is an acetylide ligand) and [Ru(bpy)(2)(PB)][PF(6)](2)(bpy = 2,2'-bipyridine). Six of the complexes have been structurally characterised. Electrochemical and luminescence studies show that all three series of complexes behave in a similar manner to the analogous complexes with 2,2'-bipyridine in place of PB. In particular, all three series of complexes show luminescence in the range 553-605 nm (Pt series), 620-640 nm (Re series) and 626-645 nm (Ru series) arising from the (3)MLCT state, with members of the Pt(II) series being the most strongly emissive with lifetimes of up to 500 ns and quantum yields of up to 6% in air-saturated CH(2)Cl(2) at room temperature. In the Re and Ru series there was clear evidence for inter-component energy-transfer processes in both directions between the (3)MLCT state of the metal centre and the singlet and triplet states of the pendant organic luminophores (naphthalene, pyrene, anthracene). For example the pyrene singlet is almost completely quenched by energy transfer to a Re-based MLCT excited state, which in turn is completely quenched by energy transfer to the lower-lying pyrene triplet state. For the analogous Ru(II) complexes the inter-component energy transfer is less effective, with (1)anthracene --> Ru((3)MLCT) energy transfer being absent, and Ru((3)MLCT)-->(3)anthracene energy transfer being incomplete. This is rationalised on the basis of a greater effective distance for energy transfer in the Ru(II) series, because the MLCT excited states are localised on the bpy ligands which are remote from the pendant aromatic group; in the Re series in contrast, the MLCT excited states involve the PB ligand to which the pendant aromatic group is directly attached, giving more efficient energy transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.