Passive acoustic monitoring of ocean soundscapes can provide information on ecosystem status for those tasked with protecting marine resources. In 2015, the National Oceanic and Atmospheric Administration (NOAA) established a long-term, continuous, low-frequency (10 Hz–2 kHz) passive acoustic monitoring site in the Cordell Bank National Marine Sanctuary (CBNMS), located offshore of the central United States of America (U.S.) west coast, near San Francisco, CA. The California Current flows southward along the coast in this area, supporting a diverse community of marine animals, including several baleen whale species. Acoustic data analysis revealed that both large vessels and vocalizing baleen whales contribute to the ambient soundscape of the CBNMS. Sound levels fluctuated by month with the highest levels in the fall and lowest levels in the summer. Throughout the year, very low-frequency (10–100 Hz) sound levels were most variable. Vessels and whales overlap in their contributions to ambient sound levels within this range, although vessel contributions were more omnipresent, while seasonal peaks were associated with vocalizing whales. This characterization of low-frequency ambient sound levels in the CBNMS establishes initial baselines for an important component of this site's underwater soundscape. Standardized monitoring of soundscapes directly supports NOAA's ability to evaluate and report on conditions within national marine sanctuaries.
Long-term passive acoustic monitoring of cetaceans is frequently limited by the data storage capacity and battery life of the recording system. Duty cycles are a mechanism for subsampling during the recording process that facilitates long-term passive acoustic studies. While duty cycles are often used, there has been little investigation on the impact that this approach has on the ability to answer questions about a species' behavior and occurrence. In this study, the effects of duty cycling on the acoustic detection of southern resident killer whales (SRKW) ( Orcinus orca) were investigated. Continuous acoustic data were subsampled to create 288 subsampled datasets with cycle lengths from 5 to 180 min and listening proportions from 1% to 67%. Duty cycles had little effect on the detection of the daily presence of SRKW, especially when using cycle lengths of less than an hour. However, cycle lengths of 15–30 min and listening proportions of at least 33% were required to accurately calculate durations of acoustic bouts and identify those bouts to ecotype. These results show that the optimal duty cycle depends on the scale of the research question and provide a framework for quantitative analysis of duty cycles for other marine species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.