ABSTRACT:Expression levels of the major human sulfotransferases (SULTs) involved in xenobiotic detoxification in a range of human tissues (i.e., SULT "pies") are not available in a form allowing comparison between tissues and individuals. Here we have determined, by quantitative immunoblotting, expression levels for the five principal human SULTs-SULT1A1, SULT1A3/4, SULT1B1, SULT1E1, and SULT2A1-and determined the kinetic properties toward probe substrates, where available, for these enzymes in cytosol samples from a bank of adult human liver, small intestine, kidney, and lung. We produced new isoform-selective antibodies against SULT1B1 and SULT2A1, which were used alongside antibodies against SULT1A3 and SULT1A1 previously produced in our laboratory or available commercially (SULT1E1). Expression levels were derived using purified recombinant enzymes to construct standard curves for each individual isoform and immunoblot. Substantial intertissue and interindividual differences in expression were observed. SULT1A1 was the major enzyme (>50% of total, range 420-4900 ng/mg cytosol protein) in the liver, followed by SULT2A1, SULT1B1, and SULT1E1. SULT1A3 was completely absent from this tissue. In contrast, the small intestine contained the largest overall amount of SULT of any of the tissues, with SULT1B1 the major enzyme (36%), closely followed by SULT1A3 (31%), and SULT1A1, SULT1E1, and SULT2A1 more minor forms (19, 8, and 6% of total, respectively). The kidney and lung contained low levels of SULT. We provide a unique data set that will add value to the study of the role and contribution of sulfation to drug and xenobiotic metabolism in humans.
The NADPH dehydrogenase quinone oxido-reductase 1 (NQO1) enzyme is an antioxidant and metabolic enzyme that performs two electron reduction of quinones and other chemicals. Based on the physiologic role(s) of NQO1, we hypothesized that expression and activity of this enzyme would vary with age and other demographic variables. Cytosols from 117 archived human livers were investigated for changes in NQO1 with age, sex, obesity, and ethnicity. Protein expression but not activity of NQO1 was weakly negatively correlated with age (Spearman r = -0.2, P = 0.03). No sex differences were observed for either protein expression or activity and for ethnicity; Caucasians had greater NQO1 activity than Asians (P < 0.05). Overweight children had statistically significantly higher NQO1 activity as compared with ideal weight children (P < 0.05) although this difference was not observed in adults. These findings establish that NQO1 is approximately as active in children as adults. However, modeled NQO1 clearance (both allometric and physiologically based pharmacokinetics) predicted maturation at 23 to 26 years. This is almost certainly an overestimate, with error in the model resulting from a small sample size and inability to scale for age-related changes in hepatic cellularity and/or cytosolic protein content, and indicates a delay in reaching maximum clearance through the NQO1 pathway that is affected by physiologic development as much, or more than, biochemical development. Obesity may increase hepatic NQO1 activity in children, which is likely a protective mechanism in oxidative stress, but may also have significant implications for drug and chemical disposition in obese children.
Cultured cryopreserved human hepatocytes are extensively used as a model system for studying drug metabolism, although they remain poorly characterized in respect of the major conjugation reactions glucuronidation and sulfation. Using paracetamol (acetaminophen), we assessed eleven samples of cryopreserved human hepatocytes for their suitability to investigate the simultaneous glucuronidation and sulfation of xenobiotics and evaluated inhibitors of conjugation. Kinetic characterization showed broadly similar values for paracetamol conjugation by hepatocytes (as reported in the literature for in vitro systems), with Km values of approximately 6 mM and 0.3 mM for glucuronidation and sulfation, respectively. Substantial interindividual differences were observed. The hepatocytes demonstrated a strong dose-dependent switch from a preponderance of sulfation at low concentrations of paracetamol to glucuronidation at higher doses, consistent with routes of clearance in vivo. A number of drugs, some of which such as probenecid and sulfinpyrazone are known to interact with paracetamol in vivo, were demonstrated to inhibit the sulfation and/or glucuronidation of paracetamol in hepatocytes, demonstrating the potential application of this model system for studying drug-drug interactions involving conjugation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.