Global increases in atmospheric CO 2 and temperature are associated with changes in ocean chemistry and circulation, altering light and nutrient regimes. Resulting changes in phytoplankton community structure are expected to have a cascading effect on primary and export production, food web dynamics and the structure of the marine food web as well the biogeochemical cycling of carbon and bio-limiting elements in the sea. A review of current literature indicates cell size and elemental stoichiometry often respond predictably to abiotic conditions and follow biophysical rules that link environmental conditions to growth rates, and growth rates to food web interactions, and consequently to the biogeochemical cycling of elements. This suggests that cell size and elemental stoichiometry are promising ecophysiological traits for modelling and tracking changes in phytoplankton community structure in response to climate change. In turn, these changes are expected to have further impacts on phytoplankton community structure through as yet poorly understood secondary processes associated with trophic dynamics.
We analyzed the cellular content of C, N, P, S, K, Mg, Ca, Sr, Fe, Mn, Zn, Cu, Co, Cd, and Mo in 15 marine eukaryotic phytoplankton species in culture representing the major marine phyla. All the organisms were grown under identical culture conditions, in a medium designed to allow rapid growth while minimizing precipitation of iron hydroxide. The cellular concentrations of all metals, phosphorus, and sulfur were determined by high-resolution inductively coupled plasma mass spectrometry (HR-ICPMS) and those of carbon and nitrogen by a carbon hydrogen nitrogen analyzer. Accuracy of the HR-ICPMS method was validated by comparison with data obtained with 55 Fe radioactive tracer and by a planktonic reference material. The cellular quotas (normalized to P) of trace metals and major cations in the biomass varied by a factor of about 20 among species (except for Cd, which varied over two orders of magnitude) compared with factors of 5 to 10 for major nutrients. Green algae had generally higher C, N, Fe, Zn, and Cu quotas and lower S, K, Ca, Sr, Mn, Co, and Cd quotas than coccolithophores and diatoms. Co and Cd quotas were also lower in diatoms than in coccolithophores. Although trace element quotas are influenced by a variety of growth conditions, a comparison of our results with published data suggests that the measured compositions reflect chiefly the intrinsic (i.e. genetically encoded) trace element physiology of the individual species. Published field data on the composition of the planktonic biomass fall within the range of laboratory values and are generally close to the approximate extended Redfield formula given by the average stoichiometry of our model species (excluding the hard parts):While clearly this elemental stoichiometry varies between species and, potentially, in response to changes in the chemistry of seawater, it provides a basis for examining how phytoplankton influence the relative distributions of the ensemble of major and trace elements in the ocean.Abbreviation: HR-ICPMS, high-resolution inductively coupled plasma mass spectrometry Over the past two decades, both culture and field studies have revealed that trace metals can be important in controlling primary production and regulating the community structure of marine phytoplankton. For 1
Phytoplankton is a nineteenth century ecological construct for a biologically diverse group of pelagic photoautotrophs that share common metabolic functions but not evolutionary histories. In contrast to terrestrial plants, a major schism occurred in the evolution of the eukaryotic phytoplankton that gave rise to two major plastid superfamilies. The green superfamily appropriated chlorophyll b, whereas the red superfamily uses chlorophyll c as an accessory photosynthetic pigment. Fossil evidence suggests that the green superfamily dominated Palaeozoic oceans. However, after the end-Permian extinction, members of the red superfamily rose to ecological prominence. The processes responsible for this shift are obscure. Here we present an analysis of major nutrients and trace elements in 15 species of marine phytoplankton from the two superfamilies. Our results indicate that there are systematic phylogenetic differences in the two plastid types where macronutrient (carbon:nitrogen:phosphorus) stoichiometries primarily reflect ancestral pre-symbiotic host cell phenotypes, but trace element composition reflects differences in the acquired plastids. The compositional differences between the two plastid superfamilies suggest that changes in ocean redox state strongly influenced the evolution and selection of eukaryotic phytoplankton since the Proterozoic era.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.