This review focuses on the cytotoxic effect of new synthetic pyrazolo[4,3-e][1,2,4]triazine derivatives against different tumor cell lines. Some annulated pyrazolotriazines i.e., pyrazolo[4,3-e][1,2,4]triazolo[4,3-b][1,2,4]triazines and pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine demonstrated significant broad cytotoxic activity in micromolar range concentration, which could have excellent potential to be new candidate therapeutic agents in cancer chemotherapy.
Referring to our previous laboratory results related to the tyrosinase and urease inhibition by pyrazolo[4,3-e][1,2,4]triazine sulfonamides, we examined here in silico the mechanism of action at the molecular level of the investigated pyrazolotriazine sulfonamides by the molecular docking method. The studied compounds being evaluated for their cytotoxic effect against cancer cell lines (MCF-7, K-562) and for recombinant Abl and CDK2/E kinase inhibitory potency turned out to be inactive in these tests. The pyrazolotriazines were also investigated with respect to their lipophilicity and plasma protein binding using HPLC chromatography in isocratic conditions. The observed small affinity for plasma proteins could be advantageous in the potential in vivo studies. Moreover, the compounds were sensitive to metabolic transformations with phase I enzymes, which led to the hydroxylation and dealkylation products, whereas phase II transformations did not occur.
A series of new pyrazolo[4,3-e][1,2,4]triazine acyclonucleosides 2–5 and 8 were prepared and evaluated for their anticancer activity against human cancer cell lines (MCF-7, K-562) and CDK2/E, as well as Abl protein kinases inhibitors. Lipophilicity of the compounds was determined using C-18 and immobilized artificial membrane (IAM) chromatography. In order to confirm the molecular structures and synthesis pathway of new acyclonucleosides, X-ray analysis was performed for model compound 3. Theoretical calculations at the DFT/B3LYP/6-311++G(d,p) level were used for the characterization of electronic structures of 1–8. The potential antiviral activity of acyclonucleosides 2–8 was tested in silico using molecular docking method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.