Summary
Pepsin‐solubilised collagen from the ribbon jellyfish (Chrysaora sp., morphotype 1) umbrella (JPSC) was isolated and characterised. The yield of collagen varied (9–19%, based on ash‐free dry weight) depending on the amount of pepsin used. Type II collagen was the major component of extracted collagen. The peptide map of JPSC differed from that of standard collagen type II, which indicates their different primary structures. FTIR spectra of JPSC, however, did not differ significantly from those of type II collagen. The Tmax of JPSC was 37.38 °C, which is higher than that of other marine collagens. Glycine was the main amino acid in JPSC (320 residues per 1000 residues), followed by glutamic acid, alanine, proline, aspartic acid and hydroxyproline. The isoelectric point of JPSC was 6.64. These results indicate that this jellyfish species has the potential to be a marine source of type II collagen that can be used in place of land‐based sources.
SummaryCollagen isolated from the ribbon jellyfi sh (Chrysaora sp.) was hydrolysed using three diff erent proteases (i.e. trypsin, alcalase and Protamex) to obtain bioactive peptides. Angiotensin-I-converting enzyme (ACE) inhibitory activity and antioxidant activities (i.e. ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity) of the peptides were measured and compared, and the eff ect of the duration of hydrolysis on the bioactivity (ACE inhibitory and antioxidant activities) of peptides was also evaluated. FRAP activity was the highest in Protamex-induced (25-27 mM) and trypsin-induced hydrolysates (24-26 mM) at 7 and 9 h, respectively. Conversely, hydrolysates produced by trypsin for 1 and 3 h showed the highest DPPH radical scavenging activities (94 and 92 %, respectively). Trypsin-induced hydrolysates (at 3 h) also showed the highest ACE inhibitory activity (89 %). The peptide sequences with the highest activities were identifi ed using tandem mass spectrometry, and the results show that the hydrolysates had a high content of hydrophobic amino acids as well as unique amino acid sequences, which likely contribute to their biological activities.
The molecular mass distribution, amino acid composition and radical-scavenging activity of collagen hydrolysates prepared from collagen isolated from the sea cucumber Stichopus vastus were investigated. β and α1 chains of the collagen were successfully hydrolysed by trypsin. The molecular mass distribution of the hydrolysates ranged from 5 to 25 kDa, and they were rich in glycine, alanine, glutamate, proline and hydroxyproline residues. The hydrolysates exhibited excellent radical-scavenging activity. These results indicate that collagen hydrolysates from S. vastus can be used as a functional ingredient in food and nutraceutical products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.