Due to the lack of inertia and uncertainty in the selection of optimal Proportional Integral (PI) controller gains, the voltage and frequency variations are higher in the islanded mode of the operation of a Microgrid (MG) compared to the grid-connected mode. This study, as such, develops an optimal control strategy for the voltage and frequency regulation of Photovoltaic (PV) based MG systems operating in islanding mode using Grasshopper Optimization Algorithm (GOA). The intelligence of the GOA is utilized to optimize the PI controller parameters. This ensures an enhanced dynamic response and power quality of the studied MG system during Distributed Generators (DG) insertion and load change conditions. A droop control is also employed within the control architecture, alongside the voltage and current control loops, as a power-sharing controller. In order to validate the performance of the proposed control architecture, its effectiveness in regulating MG voltage, frequency, and power quality is compared with the precedent Artificial Intelligence (AI) based control architectures for the same control objectives. The effectiveness of the proposed GOA based parameter selection method is also validated by analyzing its performance with respect to the improved transient response and power quality of the studied MG system in comparison with that of the Particle Swarm Optimization (PSO) and Whales Optimization Algorithm (WOA) based parameter selection methods. The simulation results establish that the GOA provides a faster and better solution than PSO and WOA which resulted in a minimum voltage and frequency overshoot with minimum output current and Total Harmonic Distortion (THD).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.