Titanium dioxide nanoparticles (TiO2-NPs) were synthesized via a facile hydrothermal method. X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FTIR), and Raman spectroscopy were used to study the structure, morphology, chemical composition, and functional group attached to the as-synthesized TiO2-NPs. These NPs were then used to test their efficacy against various microbes and their potency as effective catalysts. TiO2-NPs are found to have the maximum antibacterial activity against Gram-negative bacterial strains rather than Gram-positive bacteria. The photocatalytic activity of the TiO2-NPs was investigated for the photodegradation of 10 ppm bromophenol blue (BPB) dye by using 0.01 g–0.05 g of catalyst. TiO2-NPs exhibited the removal of 95% BPB, respectively, within 180 min. The TiO2-NPs’ antibacterial and catalytic properties suggest that these may be used in environmental remediation as a cost-effective and environmentally friendly wastewater and air treatment material.
The use of Phyllanthus emblica (gooseberry) leaf extract to synthesize Boron-doped zinc oxide nanosheets (B-doped ZnO-NSs) is deliberated in this article. Scanning electron microscopy (SEM) shows a network of synthesized nanosheets randomly aligned side by side in a B-doped ZnO (15 wt% B) sample. The thickness of B-doped ZnO-NSs is in the range of 20–80 nm. B-doped ZnO-NSs were tested against both gram-positive and gram-negative bacterial strains including Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, and Escherichia coli. Against gram-negative bacterium (K. pneumonia and E. coli), B-doped ZnO displays enhanced antibacterial activity with 26 and 24 mm of inhibition zone, respectively. The mass attenuation coefficient (MAC), linear attenuation coefficient (LAC), mean free path (MFP), half-value layer (HVL), and tenth value layer (TVL) of B-doped ZnO were investigated as aspects linked to radiation shielding. These observations were carried out by using a PTW® electron detector and VARIAN® irradiation with 6 MeV electrons. The results of these experiments can be used to learn more about the radiation shielding properties of B-doped ZnO nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.