Nowadays, a significant number of infectious diseases such as human coronavirus disease (COVID-19) are threatening the world by spreading at an alarming rate. Some of the literatures pointed out that the pandemic is exhibiting seasonal patterns in its spread, incidence and nature of the distribution. In connection to the spread and distribution of the infection, scientific analysis that answers the questions whether the next summer can save people from COVID-19 is required. Many researchers have been exclusively asked whether high temperature during summer can slow down the spread of the COVID-19 as it has with other seasonal flues. Since there are a lot of questions that are unanswered right now, and many mysteries aspects about the COVID-19 that is still unknown to us, in-depth study and analysis of associated weather features are required. Moreover, understanding the nature of COVID-19 and forecasting the spread of COVID-19 request more investigation of the real effect of weather variables on the transmission of the COVID-19 among people. In this work, various regressor machine learning models are proposed to extract the relationship between different factors and the spreading rate of COVID-19. The machine learning algorithms employed in this work estimate the impact of weather variables such as temperature and humidity on the transmission of COVID-19 by extracting the relationship between the number of confirmed cases and the weather variables on certain regions. To validate the proposed method, we have collected the required datasets related to weather and census features and necessary prepossessing is carried out. From the experimental results, it is shown that the weather variables are more relevant in predicting the mortality rate when compared to the other census variables such as population, age, and urbanization. Thus, from this result, we can conclude that temperature and humidity are important features for predicting COVID-19 mortality rate. Moreover, it is indicated that the higher the value of temperature the lower number of infection cases.
Globally, many research works are going on to study the infectious nature of COVID-19 and every day we learn something new about it through the flooding of the huge data that are accumulating hourly rather than daily which instantly opens hot research avenues for artificial intelligence researchers. However, the public’s concern by now is to find answers for two questions; (1) When this COVID-19 pandemic will be over? and (2) After coming to its end, will COVID-19 return again in what is known as a second rebound of the pandemic? In this work, we developed a predictive model that can estimate the expected period that the virus can be stopped and the risk of the second rebound of COVID-19 pandemic. Therefore, we have considered the SARIMA model to predict the spread of the virus on several selected countries and used it for predicting the COVID-19 pandemic life cycle and its end. The study can be applied to predict the same for other countries as the nature of the virus is the same everywhere. The proposed model investigates the statistical estimation of the slowdown period of the pandemic which is extracted based on the concept of normal distribution. The advantages of this study are that it can help governments to act and make sound decisions and plan for future so that the anxiety of the people can be minimized and prepare the mentality of people for the next phases of the pandemic. Based on the experimental results and simulation, the most striking finding is that the proposed algorithm shows the expected COVID-19 infections for the top countries of the highest number of confirmed cases will be manifested between Dec-2020 and Apr-2021. Moreover, our study forecasts that there may be a second rebound of the pandemic in a year time if the currently taken precautions are eased completely. We have to consider the uncertain nature of the current COVID-19 pandemic and the growing inter-connected and complex world, that are ultimately demanding flexibility, robustness and resilience to cope with the unexpected future events and scenarios.
COVID-19 was first discovered in Wuhan, China in December 2019. It is one of the worst pandemics in human history. Recent studies reported that COVID-19 is transmitted among humans by droplet infection or direct contact. COVID-19 pandemic has invaded more than 210 countries around the world and as of February 18 th , 2021, just after a year has passed, a total of 110,533,973 confirmed cases of COVID-19 were reported and its death toll reached about 2,443,091. COVID-19 is a new member of the family of corona viruses, its nature, behaviour, transmission, spread, prevention, and treatment are to be investigated. Generally, a huge amount of data is accumulating regarding the COVID-19 pandemic, which makes hot research topics for machine learning researchers. However, the panicked world’s population is asking when the COVID-19 will be over? This study considered machine learning approaches to predict the spread of the COVID-19 in many countries. The experimental results of the proposed model showed that the overall R2 is 0.99 from the perspective of confirmed cases. A machine learning model has been developed to predict the estimation of the spread of the COVID-19 infection in many countries and the expected period after which the virus can be stopped. Globally, our results forecasted that the COVID-19 infections will greatly decline during the first week of September 2021 when it will be going to an end shortly afterward.
The Residual Long Short Term Memory (LSTM) deep learning approach is attracting attension of many researchers due to its efficiency when trained on high dimensional datasets. Nowadays, Human Activity Recognition (HAR) has come with enormous challenges that have to be addressed. In addressing such a problem, one can think of developing an application that can help the elderly people as an assistant when it works in collaboration with other timely technologies such as wearable devices with the help of IoT. Many research works are using a standard dataset in evaluating their proposed method in this regard. The dataset comes with its own challenge such as imbalanced classes. In this work, we propose to apply different machine learning techniques to address the specified problems and the method is validated on a standard dataset. To validate the proposed method, we evaluated using different standard metrics such as classification accuracy, precision, recall, f1-score, and Receiver Operating Characteristic (ROC) curve. The proposed method achieves an Area Under Curve (AUC) of 100%, 97.66% of accuracy, 91.59% precision, 93.75% of recall and 92.66% of F1-score respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.