Summary
In this paper, we investigate the stabilization problem for a class of switched affine systems with a state‐dependent switching law. Since the states measurements are in general subject to perturbations and noises, we propose a robust switching‐law design method. Qualitative conditions for the stability of the closed‐loop switched system are given. Stability conditions are also formulated as Linear Matrix Inequalities (LMIs) to allow numerical implementations. Results are illustrated by numerical examples to show the efficiency of the method and its limits.
In this paper, we consider the problem of symbolic model design for the class of incrementally stable switched systems. Contrarily to the existing results in the literature where switching is considered as periodically controlled, in this paper, we consider aperiodic time sampling resulting either from uncertain or event-based sampling mechanisms. Firstly, we establish sufficient conditions ensuring that usual symbolic models computed using periodic time-sampling remain approximately bisimilar to a switched system when the sampling period is uncertain and belongs to a given interval; estimates on the bounds of the interval are provided. Secondly, we propose a new method to compute symbolic models related by feedback refinement relations to incrementally stable switched systems, using an event-based approximation scheme. For a given precision, these event-based models are guaranteed to enable transitions of shorter duration and are likely to allow for more reactiveness in controller design. Finally, an example is proposed in order to illustrate the proposed results and simulations are performed for a Boost dc-dc converter structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.