This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
1
A Simple Constitutive Model for Predicting Flow Stress of Medium Carbon Microalloyed Steel during Hot Deformation
AbstractThe constitutive behavior of a medium carbon microalloyed steel during hot working over a wide range of temperatures and strain rates was studied using the Johnson-Cook (JC) model, the Hollomon equation, and their modifications. The original JC model was not able to predict the softening part of the flow curves and the subsequent modifications of the JC model to account for the softening stage and the strain dependency of constants were not satisfactory owing to the uncoupled nature of the JC approach regarding strain rate and temperature. The coupled effect of these variables was considered in the form of Zener-Hollomon parameter (Z) and the constants of the Hollomon equation were related to Z. This modification was found to be useful for the hardening stage but the overall consistency between the experimental flow curves and the calculated ones was not good. Therefore, a simple constitutive model was proposed in the current work, in which by utilization of the peak stress and strain into the Hollomon equation, good prediction abilities were attained. Conclusively, the proposed model can be considered as an efficient one for modeling and prediction of hot deformation flow curves.
The effects of introducing La2NiO4 nanocatalyst on the electrochemical performance of La0.8Sr0.2MnO3 are investigated under solid oxide electrolysis cell and fuel cell modes, as well as open circuit voltage. Extracted data from impedance spectroscopy are interpreted with the analysis of distribution of relaxation times. La2NiO4 infiltration effectively reduces the activation energy of the oxygen reactions from 1.35 to 0.99 eV. It also changes the rate controlling process of the overall reaction. Polarization behavior of La2NiO4‐infiltrated La0.8Sr0.2MnO3 electrode shows superior performance under electrolysis mode compared to the fuel cell mode. Drastic increase in the size of low frequency arc during anodic current passage in the non‐infiltrated La0.8Sr0.2MnO3 electrode is hampered by infiltration of La2NiO4 nanocatalyst. By applying anodic current on infiltrated La0.8Sr0.2MnO3, no displacement is observed in the position of high frequency peaks in the distribution of relaxation time graphs and only a small increase in height occurs for the low frequency arc. Additionally, La2NiO4‐infiltrated electrode impressively decreases overpotential by 74% compared to the non‐infiltrated one under electrolysis mode at 800°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.