BACKGROUND In this study, a face‐centered central composite design was applied to optimize pulsed electric field parameters (voltage: 1, 4, 7 kV cm−1; pulse number: 10, 65, 120) for the extraction of natural saponins from Chubak root. Data analysis showed that increasing the voltage from 1 to 4 kV cm−1 and pulse number from 10 to 65 increased foaming ability (FA) and emulsion stability, and decreased foam density (FD), foam stability (FS) and lightness, due to the improved extraction of saponins. RESULTS Whereas, an opposite trend was observed for FA, FD and FS on increasing the voltage from 4 to 7 kV cm−1 as a result of more impurities being extracted. Furthermore, the Chubak root extract (CRE) (0, 1.5, 3.0 and 4.5 g kg−1) obtained under the optimized conditions (voltage of 6.4 kV cm−1 and pulse number of 80) was used in ice cream formulation because of its ability to reduce surface tension. Based on the results, the samples containing higher amounts of CRE showed higher viscosity, consistency coefficient, overrun, melting resistance and creaminess, as well as lower values of flow behavior index, hardness, adhesiveness, coarseness and coldness. This could be related to the increased water retention, improved whipping ability, greater fat destabilization and smaller ice crystals. Although more bitterness was perceived as a result of an increase in the level of CRE, it had no negative effect on the overall acceptance assessed by trained sensory panelists. CONCLUSIONS The results of this study briefly support the conclusion that CRE has a very high potential for use as a foaming, emulsifying and stabilizing agent to improve the quality of ice cream. © 2020 Society of Chemical Industry
A proper use of medicinal plants requires accurate scientific information and understanding of their chemical constituents. The therapeutic effects in the plants are due to the chemical compounds therein. Cynodon dactylon (L.) Pers. of the family Poaceae is a perennial, pan-tropical species of grass which is a well-known traditional medicine and has a renowned position for treatment of many symptoms and diseases. The chemical composition, free radical scavenging activity, and antimicrobial properties of the methanolic extract of C. dactylon rhizomes against selected bacterial and fungal strains were investigated using disk-diffusion method. The results indicated that the major fatty acid structures of C. dactylon methanolic extract were palmitic acid (36.40%), oleic acid (28.26%), and linoleic acid (17.01%). Alpha-tocopherol (151.39 mg·kg−1) and sitosterol (3199.62 mg·kg−1) were the main tocopherols and sterols, respectively. According to the instrumental analysis, the total phenolic compounds of methanolic extract were equal to 917.08 mg·kg−1 and the main compound was hydroquinone (66.89%). Antioxidant activity of the methanolic extract at concentrations of 100–1000 ppm was 9.81–67.87%, which is significantly different from the 200 ppm synthetic antioxidant (BHT) with free radical scavenging activity equal to 48.93% (p<0.05). The antimicrobial study revealed that the methanolic extract of C. dactylon rhizomes was effective against all of the bacterial pathogens and the antibacterial activity increased with an increase in the concentration of extract. Therefore, the largest zone of inhibition was observed against Bacillus cereus (18.3 ± 0.4 mm) and Escherichia coli (16.8 ± 0.5 mm) at 1000 ppm. The highest resistance was observed with Pseudomonas aeruginosa (inhibition zone of 12.8 ± 0.15 mm). Methanolic extract at 200 ppm had no effect against fungus Aspergillus niger. However, at 1000 ppm concentration, an inhibition zone with a diameter of 14.4 ± 0.45 mm was formed.
Functional foods play an important role in human health by prevention of disease. A variety of functional foods are produced around the world. Recently, the consumption of dairy products containing probiotic bacteria and prebiotics (synbiotic) has increased. Yoghurt is the most common fermented dairy product. Various compounds are used to enrich yoghurt. One of these compounds is dietary fiber. Since the peel of fruits has a significant amount of fiber and is mainly disposed of as solid waste, so using the peel of fruits to extract fiber can not only solve environmental problems but also produce a cheap and useful source that leads to the production of dietary fiber. In this study, the effect of banana fiber and banana peel fiber at different concentrations (0, 0.2, 0.5, and 1%) on the chemical and rheological properties of synbiotic yogurt prepared from camel milk was investigated. The result showed that with increase of the amount of both fibers, pH, hydration, surface tension, overall acceptability, color, and flavor of the samples decreased significantly, but the viscosity, survival of probiotic bacteria (Lactobacillus casei and Lactobacillus gasseri), and texture acceptance increased significantly ( p < 0.05 ). In conclusion, these fibers were able to reduce the syneresis of yogurt, which is one of the biggest disadvantages of yogurt, and help to increase health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.