Aspect-based Sentiment Analysis (ABSA) aims to extract significant aspects of an item or product from reviews and predict the sentiment of each aspect. Previous similarity methods tend to extract aspect categories at the word level by combining Language Models (LM) in their models. A drawback for the LM model is its dependence on a large amount of labelled data for a specific domain to function well. This work proposes a mechanism to address labelled data dependency by a one-step approach experimenting to decide the best combinatory architectures of recurrent-based LM and the best semantic similarity measures for fostering a new aspect category detection model. The proposed model addresses drawbacks of previous aspect category detection models in an implicit manner. The datasets of this study, S1 and S2, are from standard SemEval online competition. The proposed model outperforms the previous baseline models in terms of the F1-score of aspect category detection. This study finds more relevant aspect categories by creating a more stable and robust model. The F1 score of our best model for aspect category detection is 79.03% in the restaurant domain for the S1 dataset. In dataset S2, the F1score is 72.65% in the laptop domain and 75.11% in the restaurant domain.
Advancements in text representation have produced many deep language models (LMs), such as Word2Vec and recurrent-based LMs. However, there are scarce works that focus on detecting implicit sentiments with a small amount of labelled data because there are many different review areas. Deep learning techniques are suitable to automate the representation learning process. Hence, we proposed a semi-supervised aspect-based sentiment analysis (ABSA) model for online review to predict explicit and implicit sentiment in three domains (laptop, restaurant, and hotel). The datasets of this study, S1 and S2, were obtained from a standard SemEval online competition and Amazon review datasets. The proposed models outperform the previous baseline models regarding the F1-score of aspect category detection and accuracy of sentiment detection. This study finds more relevant aspects and accurate sentiment for ABSA by developing more stable and robust models. The accuracy of sentiment detection is 84.87% in the restaurant domain on the first dataset. For the second dataset, the proposed method achieved 84.43% in the laptop domain, 85.21% in the restaurant domain, and 85.57% in the hotel domain. The novelty is the proposed new semi-supervised model for aspect sentiment detection with embedded aspect inspired by the encoder–decoder architecture in the neural machine translation (NMT) model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.