Chlorins that bear a gem-dimethyl group, which attributes their resistance to oxidation, are of interest for applications in photomedicine. Herein, we present the synthesis and the photophysical properties of two geminal-dimethyl chlorins (dihydroporphyrins) and their free base counterparts that act as efficient singlet oxygen generators and thus exhibit potential for use in photodynamic therapy (PDT) as anticancer or antimicrobial agents upon further derivatization. A complete characterization of their spectral and photophysical properties is accompanied by density functional calculations (DFT) as well as time dependent (TD) DFT to investigate the features of the frontier molecular orbitals. To demonstrate the potential of these compounds, standard palladium mediated reaction yielded a porphyrin-chlorin dyad in moderate yield. File list (2) download file view on ChemRxiv gemDiMeChlorin PSs ChemRxiv.pdf (1.45 MiB) download file view on ChemRxiv Supplementary -SI.pdf (2.45 MiB)
Within this work, we review the metal coordination effect on the photophysics of metal dipyrrinato complexes. Dipyrrinato complexes are promising candidates in the search for alternative transition metal photosensitizers for application in photodynamic therapy (PDT). These complexes can be activated by irradiation with light of a specific wavelength, after which, cytotoxic reactive oxygen species (ROS) are generated. The metal coordination allows for the use of the heavy atom effect, which can enhance the triplet generation necessary for generation of ROS. Additionally, the flexibility of these complexes for metal ions, substitutions and ligands allows the possibility to tune their photophysical properties. A general overview of the mechanism of photodynamic therapy and the properties of the triplet photosensitizers is given, followed by further details of dipyrrinato complexes described in the literature that show relevance as photosensitizers for PDT. In particular, the photophysical properties of Re(I), Ru(II), Rh(III), Ir(III), Zn(II), Pd(II), Pt(II), Ni(II), Cu(II), Ga(III), In(III) and Al(III) dipyrrinato complexes are discussed. The potential for future development in the field of (dipyrrinato)metal complexes is addressed, and several new research topics are suggested throughout this work. We propose that significant advances could be made for heteroleptic bis(dipyrrinato)zinc(II) and homoleptic bis(dipyrrinato)palladium(II) complexes and their application as photosensitizers for PDT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.