This paper focuses on the Landsat 8 satellite image classification of the OLI sensor via the remote sensing software Erdas Imagine in order to calculate the land cover surface and to establish the mapping of the special reserve Kalambatritra of Madagascar for the year 2018. For this, we adopted the methodology of satellite image processing based on supervised classification algorithms. The processing was moved to spectral preparation and improvement of spatial resolution using the blue, green, red, near infrared and panchromatic channels. Then, a comparison study of the supervised classification algorithms was done to obtain a more accurate result. The validation of the classification results was performed using several reference points, a previous national processing result already validated in the field and the Google earth image of the same year. After repeating the classification several times, we obtained accuracies of 77%, 75%, 88%, 84% and 90% with Kappa indices of 0.64, 0.61, 0.80, 0.76 and 0.84 for the Spectral Angle Mapper, Spectral Correlation Mapper, Maximum Likelihood, Mahalanobis Distance and Minimum Distance. Based on these results, the minimum distance showed a higher accuracy and gave us 13462.1842 ha of forest area, 16798.8006 ha of prairie for the year 2018.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.