Occurrences of traffic signs that belong to certain sign categories and occurrences of crossroads of various topologies are utilized in detecting change in the urban road environment that moves past an ego-car. Three urban environment types, namely downtown, residential and industrial/commercial areas, are considered in the study and changes between these are to be detected. In the preparatory phase, the ego-car is used for traffic sign and crossroads data collection. In the application phase, the ego-car hosts an advanced driver assistance system (ADAS) that captures and analyzes images of the road environment and computes the required input data to the proposed road environment detection (RoED) subsystem. A statistical inference method relying on the minimum description length (MDL) principle was applied to the change detection problem at hand. The above occurrences along a route are seen as a realization of an inhomogeneous marked Poisson process. Page-Hinkley change detectors tuned to empirical data were set to work to detect change in the urban road environment. The process and the quality of the change detection are demonstrated via examples from three urban settlements in Hungary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.