In recent years, magnetism has gained an enormous amount of interest among researchers for actuating different sizes and types of bio/soft robots, which can be via an electromagnetic‐coil system, or a system of moving permanent magnets. Different actuation strategies are used in robots with magnetic actuation having a number of advantages in possible realization of microscale robots such as bioinspired microrobots, tetherless microrobots, cellular microrobots, or even normal size soft robots such as electromagnetic soft robots and medical robots. This review provides a summary of recent research in magnetically actuated bio/soft robots, discussing fabrication processes and actuation methods together with relevant applications in biomedical area and discusses future prospects of this way of actuation for possible improvements in performance of different types of bio/soft robots.
Brain is one of the most temperature sensitive organs. Besides the fundamental role of temperature in cellular metabolism, thermal response of neuronal populations is also significant during the evolution of various neurodegenerative diseases. For such critical environmental factor, thorough mapping of cellular response to variations in temperature is desired in the living brain. So far, limited efforts have been made to create complex devices that are able to modulate temperature, and concurrently record multiple features of the stimulated region. In our work, the in vivo application of a multimodal photonic neural probe is demonstrated. Optical, thermal, and electrophysiological functions are monolithically integrated in a single device. The system facilitates spatial and temporal control of temperature distribution at high precision in the deep brain tissue through an embedded infrared waveguide, while it provides recording of the artefact-free electrical response of individual cells at multiple locations along the probe shaft. Spatial distribution of the optically induced temperature changes is evaluated through in vitro measurements and a validated multi-physical model. The operation of the multimodal microdevice is demonstrated in the rat neocortex and in the hippocampus to increase or suppress firing rate of stimulated neurons in a reversible manner using continuous wave infrared light (λ = 1550 nm). Our approach is envisioned to be a promising candidate as an advanced experimental toolset to reveal thermally evoked responses in the deep neural tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.