To study the role of the basal ganglia in learning of sequential movements, we trained two monkeys to perform a sequential button-press task (2x5 task). This task enabled us to examine the process of learning new sequences as well as the execution of well-learned sequences repeatedly. We injected muscimol (a GABA agonist) into different parts of the striatum to inactivate the local neural activity reversibly. The learning of new sequences became deficient after injections in the anterior caudate and putamen, but not the middle-posterior putamen. The execution of well-learned sequences was disrupted after injections in the middle-posterior putamen and, less severely, after injections in the anterior caudate/putamen. These results suggest that the anterior and posterior portions of the striatum participate in different aspects of learning of sequential movements.
1. Neurons in the amygdala are implicated in mediating hedonic appreciation, emotional expression, and conditioning, particularly as these relate to feeding. The amygdala receives projections from the primary taste cortex in monkeys, offering a route by which it could gain access to the gustatory information required to guide feeding behavior. We recorded the activity of 35 neurons in the amygdala of alert rhesus macaques in response to a range of gustatory intensities and qualities to characterize taste-evoked activity in this area. 2. The stimulus array comprised 26 chemicals, including four concentrations of each of the four basic taste stimuli, a series of other sugars, salts, and acids, monosodium glutamate, and orange juice. 3. Neurons responsive to taste stimulation could be found in a 76-mm3 region of the amygdala, centered 9.1 mm lateral to the midline, 14.9 mm anterior to the interaural line, and 25.7 mm below the surface of the dura. They composed 7.2% (35/484) of the cells tested for gustatory sensitivity in the amygdala. 4. The mean spontaneous activity of taste cells was 8.2 +/- 2.3 (SE) spikes per second. This rather high level provided an opportunity for reductions from spontaneous rate that was used regularly in the amygdala. When these negative response rates were included, the mean breadth-of-tuning coefficient of this sample of taste cells was 0.82. There was no strong evidence for gustatory neuron types, nor were functionally similar cells located together in a chemotopic arrangement. 5. Responses across 1.5 log units of stimulus concentration were nearly flat, with increasing excitation in some neurons largely offset by increasing inhibition in others. Taking the absolute value of the evoked activity, concentration-response functions rose monotonically to all basic stimuli except HCl, but were not sufficiently steep to account for human psychophysical data. The neural response to HCl did not rise with stimulus concentration within the range used. 6. Neural patterns representing the taste qualities of the basic stimuli were less sharply separated in the amygdala than at lower-order gustatory relays. Glucose elicited activity patterns that were most distinct from those of the nonsweet chemicals; those associated with NaCl were next most distinct. There was no clear separation between the patterns generated by chemicals that humans describe as sour and bitter. Monosodium glutamate evoked responses that did not correlate well with those of any basic stimulus, implying that its quality cannot be subsumed under the four basic tastes.(ABSTRACT TRUNCATED AT 400 WORDS)
Our previous studies have demonstrated that gustatory neurons in the parabrachial nucleus (PBN) show altered responses after the acquisition of conditioned taste aversion (CTA) to NaCl. The present study was conducted 1) to examine centrifugal influences on the altered gustatory activity of CTA-trained rats, and 2) to evaluate the role of amiloride-sensitive (ASN) and -insensitive NaCl (AIN) best units in coding the taste of NaCl. Animals were separated into 2 groups: a CTA group that had acquired taste aversion to 0.1 M NaCl and a control group that underwent pseudoconditioning before the recording experiment. Single-neuron activity, in 2 separate series of experiments, was extracellularly recorded in anesthetized rats. In the stimulation studies, the effects of electrical stimulation of the gustatory cortex (GC) or the central nucleus of amygdala (CeA) were examined on firing of PBN taste units. CeA stimulation produced excitatory effect in significantly more neurons in the CTA group (n = 8) than in the control group (n = 1). Furthermore, ASN-best units in the CTA group showed larger responses to NaCl than similar units in the control group. In the decerebration experiment, there was no statistical difference among the taste responses between the 2 groups in any best-stimulus category. These results suggest that CTA conditioning uses an effective central amygdaloid input to modulate activity of gustatory neurons in the PBN. Data also substantiate that amiloride-sensitive components of NaCl-best neurons play a critical role in the recognition of distinctive taste of NaCl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.