1 The abbreviations used are: SBTI, soybean trypsin inhibitor; Tricine, N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine.
Chronic pancreatitis is a common inflammatory disease of the pancreas. Mutations in the genes encoding cationic trypsinogen (PRSS1) and the pancreatic secretory trypsin inhibitor (SPINK1) are associated with chronic pancreatitis. Because increased proteolytic activity owing to mutated PRSS1 enhances the risk for chronic pancreatitis, mutations in the gene encoding anionic trypsinogen (PRSS2) may also predispose to disease. Here we analyzed PRSS2 in individuals with chronic pancreatitis and controls and found, to our surprise, that a variant of codon 191 (G191R) is overrepresented in control subjects: G191R was present in 220/6,459 (3.4%) controls but in only 32/2,466 (1.3%) affected individuals (odds ratio 0.37; P = 1.1 x 10(-8)). Upon activation by enterokinase or trypsin, purified recombinant G191R protein showed a complete loss of trypsin activity owing to the introduction of a new tryptic cleavage site that renders the enzyme hypersensitive to autocatalytic proteolysis. In conclusion, the G191R variant of PRSS2 mitigates intrapancreatic trypsin activity and thereby protects against chronic pancreatitis.
We investigated the biochemical properties and cellular expression of the c.346C>T (p.R116C) human cationic trypsinogen (PRSS1) mutant, which we identified in a German family with autosomal dominant hereditary pancreatitis. This mutation leads to an unpaired Cys residue with the potential to interfere with protein folding via incorrect disulfide bond formation. Recombinantly expressed p.R116C trypsinogen exhibited a tendency for misfolding in vitro. Biochemical analysis of the correctly folded, purified p.R116C mutant revealed unchanged activation and degradation characteristics compared to wild type trypsinogen. Secretion of mutant p.R116C from transfected 293T cells was reduced to ~20% of wild type. A similar secretion defect was observed with another rare PRSS1 variant, p.C139S, whereas mutants p.A16V, p.N29I, p.N29T, p.E79K, p.R122C, and p.R122H were secreted normally. All mutants were detected in cell extracts at comparable levels but a large portion of mutant p.R116C was present in an insoluble, protease-sensitive form. Consistent with intracellular retention of misfolded trypsinogen, the endoplasmic reticulum (ER) stress markers BiP and XBP1s were elevated in cells expressing mutant p.R116C. The results indicate that mutation induced misfolding and intracellular retention of human cationic trypsinogen causes hereditary pancreatitis in carriers of the p.R116C mutation. ER stress triggered by trypsinogen misfolding represents a new potential disease mechanism for chronic pancreatitis.
Human pancreatic secretions contain two major trypsinogen isoforms, cationic and anionic trypsinogen, normally at a ratio of 2 : 1. Pancreatitis, pancreatic cancer and chronic alcoholism lead to a characteristic reversal of the isoform ratio, and anionic trypsinogen becomes the predominant zymogen secreted. To understand the biochemical consequences of these alterations, we recombinantly expressed and purified both human trypsinogens and documented characteristics of autoactivation, autocatalytic degradation and Ca 2+ -dependence. Even though the two trypsinogens are 90% identical in their primary structure, we found that human anionic trypsinogen and trypsin exhibited a significantly increased (10-20-fold) propensity for autocatalytic degradation, relative to cationic trypsinogen and trypsin. Furthermore, in contrast to the characteristic stimulation of the cationic proenzyme, acidic pH inhibited autoactivation of anionic trypsinogen. In mixtures of cationic and anionic trypsinogen, an increase in the proportion of the anionic proenzyme had no significant effect on the levels of trypsin generated by autoactivation or by enterokinase at pH 8.0 in 1 mM Ca 2+ -conditions that were characteristic of the pancreatic juice. In contrast, rates of trypsinogen activation were markedly reduced with increasing ratios of anionic trypsinogen under conditions that were typical of potential sites of pathological intra-acinar trypsinogen activation. Thus, at low Ca 2+ concentrations at pH 8.0, selective degradation of anionic trypsinogen and trypsin caused diminished trypsin production; while at pH 5.0, inhibition of anionic trypsinogen activation resulted in lower trypsin yields. Taken together, the observations indicate that up-regulation of anionic trypsinogen in pancreatic diseases does not affect physiological trypsinogen activation, but significantly limits trypsin generation under potential pathological conditions.
The lysosomal cysteine protease cathepsin B is thought to play a central role in intrapancreatic trypsinogen activation and the onset of experimental pancreatitis. Recent in vitro studies have suggested that this mechanism might be of pathophysiological relevance in hereditary pancreatitis, a human inborn disorder associated with mutations in the cationic trypsinogen gene. In the present study evidence is presented that cathepsin B is abundantly present in the secretory compartment of the human exocrine pancreas, as judged by immunogold electron microscopy. Moreover, pro-cathepsin B and mature cathepsin B are both secreted together with trypsinogen and active trypsin into the pancreatic juice of patients with sporadic pancreatitis or hereditary pancreatitis. Finally, cathepsin Bcatalyzed activation of recombinant human cationic trypsinogen with hereditary pancreatitis-associated mutations N29I, N29T, or R122H were characterized. In contrast to a previous report, cathepsin B-mediated activation of wild type and all three mutant trypsinogen forms was essentially identical under a wide range of experimental conditions. These observations confirm the presence of active cathepsin B in the human pancreatic secretory pathway and are consistent with the notion that cathepsin B-mediated trypsinogen activation might play a pathogenic role in human pancreatitis. On the other hand, the results clearly demonstrate that hereditary pancreatitis-associated mutations do not lead to increased or decreased trypsinogen activation by cathepsin B. Therefore, mutation-dependent alterations in cathepsin B-induced trypsinogen activation are not the cause of hereditary pancreatitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.