Identification of broadly neutralizing antibodies against influenza A viruses has raised hopes for the development of monoclonal antibody-based immunotherapy and ‘universal’ vaccines for influenza. However, a significant part of the annual flu burden is caused by two cocirculating, antigenically distinct lineages of influenza B viruses. Here we report human monoclonal antibodies, CR8033, CR8071 and CR9114, which protect mice against lethal challenge from both lineages. Antibodies CR8033 and CR8071 recognize distinct conserved epitopes in the head region of the influenza B hemagglutinin (HA), whereas CR9114 binds a conserved epitope in the HA stem and protects against lethal challenge with influenza A and B viruses. These antibodies may inform on development of monoclonal antibody-based treatments and a universal flu vaccine for all influenza A and B viruses.
Members of the Wiskott-Aldrich Syndrome Protein (WASP) family control cytoskeletal dynamics by promoting actin filament nucleation by the Arp2/3 complex. The WASP relative, WAVE, regulates lamellipodia formation within a 400 kDa, hetero-pentameric WAVE Regulatory Complex (WRC). The WRC is inactive toward the Arp2/3 complex, but can be stimulated by the Rac GTPase, kinases and phosphatidylinositols. We report the 2.3 Å crystal structure of the WRC and complementary mechanistic analyses. The structure shows that the activity-bearing VCA motif of WAVE is sequestered by a combination of intramolecular and intermolecular contacts within the WRC. Rac and kinases appear to destabilize a WRC element that is necessary for VCA sequestration, suggesting how these signals stimulate WRC activity toward the Arp2/3 complex. Spatial proximity of the Rac binding site and a large basic surface of the WRC suggests how the GTPase and phospholipids could cooperatively recruit the complex to membranes.
The autophagy factor ATG12~ATG5 conjugate exhibits E3 ligase-like activity by which the lipidation of members of the LC3 family is facilitated. The crystal structure of the human ATG12~ATG5 conjugate bound to the amino-terminal region of ATG16L1, the factor that recruits the conjugate to autophagosomal membranes, reveals an integrated architecture in which ATG12 docks onto ATG5 through conserved residues. ATG12 and ATG5 are oriented such that other conserved residues on each molecule, including the conjugation junction, form a continuous patch. Mutagenesis data support the importance of both the ATG12–ATG5 interface and the continuous patch for E3 activity. The ATG12~ATG5 conjugate interacts with the E2 enzyme ATG3 with high-affinity through another surface location that is exclusive to ATG12, suggesting a different role of the continuous patch in E3 activity. These findings provide a foundation for understanding the mechanism of LC3 lipidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.