Some decades ago, biogeographers distinguished three major faunal types of high importance for Europe: (i) Mediterranean elements with exclusive glacial survival in the Mediterranean refugia, (ii) Siberian elements with glacial refugia in the eastern Palearctic and only postglacial expansion to Europe and (iii) arctic and/or alpine elements with large zonal distributions in the periglacial areas and postglacial retreat to the North and/or into the high mountain systems. Genetic analyses have unravelled numerous additional refugia both of continental and Mediterranean species, thus strongly modifying the biogeographical view of Europe. This modified notion is particularly true for the so-called Siberian species, which in many cases have not immigrated into Europe during the postglacial period, but most likely have survived the last, or even several glacial phases, in extra-Mediterranean refugia in some climatically favourable but geographically limited areas of southern Central and Eastern Europe. Recently, genetic analyses revealed that typical Mediterranean species have also survived the Last Glacial Maximum in cryptic northern refugia (e.g. in the Carpathians or even north of the Alps) in addition to their Mediterranean refuge areas.
The cyclic changes of the Pleistocene between cold and warm periods resulted in antagonistic responses within two different groups of organisms: one expanding during the warm periods and retracting during the cold phases and another with opposed responses. The latter group is composed of so-called arctic and alpine species. These species have recently become the focus of phylogeographical research. However, we still lack a comprehensive characterization of the different types of alpine and arctic-alpine disjunctions in the western Palearctic. Such an overview might facilitate the selection of different model species to test the different patterns of disjunctions for congruences revealing their past distribution. Therefore, we list all alpine and arctic-alpine disjunction types of the western Palearctic using butterflies and moths as a model group. We distinguish between (1) endemics of the Alps (a) with strongly restricted and (b) with broader distributions; (2) alpine disjunct species (a) with perialpine disjunctions and (b) with a wide western Palearctic distribution; (3) oro-Mediterranean species; and (4) arctic-alpine disjunct species. These types of distributions and further subtypes are exemplified using chorological data of butterfly and moth species. In this context, we discuss the intraspecific differentiation and the differentiation among siblingspecies within and among disjunct parts of the distribution area. We also formulate hypotheses of the distribution patterns during the last ice age which might best explain the actual patterns. Finally, we suggest some case studies of genetic analyses to test the above mentioned hypotheses.
The range of hosts exploited by a parasite is determined by several factors, including host availability, infectivity and exploitability. Each of these can be the target of natural selection on both host and parasite, which will determine the local outcome of interactions, and potentially lead to coevolution. However, geographical variation in host use and specificity has rarely been investigated. Maculinea (= Phengaris ) butterflies are brood parasites of Myrmica ants that are patchily distributed across the Palæarctic and have been studied extensively in Europe. Here, we review the published records of ant host use by the European Maculinea species, as well as providing new host ant records for more than 100 sites across Europe. This comprehensive survey demonstrates that while all but one of the Myrmica species found on Maculinea sites have been recorded as hosts, the most common is often disproportionately highly exploited. Host sharing and host switching are both relatively common, but there is evidence of specialization at many sites, which varies among Maculinea species. We show that most Maculinea display the features expected for coevolution to occur in a geographic mosaic, which has probably allowed these rare butterflies to persist in Europe. This article is part of the theme issue ‘The coevolutionary biology of brood parasitism: from mechanism to pattern’.
The phylogeography of species associated with European steppes and extrazonal xeric grasslands is poorly understood. This paper summarizes the results of recent studies on the phylogeography and conservation genetics of animals (20 taxa of beetles, butterflies, reptiles and rodents) and flowering plants (18 taxa) of such, ''steppic'' habitats in Eastern Central Europe. Most species show a similar phylogeographic pattern: relatively high genetic similarity within regional groups of populations and moderate-to-high genetic distinctiveness of populations from currently isolated regions located in the studied area. This distinctiveness of populations suggests a survival here during glacial maxima, including areas north of the Bohemian Massif-Carpathians arc. Steppic species generally do not follow the paradigmatic patterns known for temperate biota (south-north ''contraction-expansion''), but to some extent are similar to those of arctic-alpine taxa. There are three main groups of taxa within Eastern Central Europe that differ in their contemporary distribution pattern, which may reflect historical origin and expansion routes. Present diversity patterns of the studied steppic species suggest that they share a unique genetic signature and distinct assemblages exist in each of the now isolated areas rich in steppic habitats. At least some of these areas probably act as present ''interglacial refugia'' for steppic species. This study strongly supports the need to protect steppic species throughout their entire ranges in the region, as the continuous destruction of steppic habitats in some areas may lead not only to the disappearance of local populations, but also to the extinction of unique evolutionary units.
The taxonomic status of Alcon Blues living in Central and Western Europe (conventionally: Maculinea alcon and Maculinea rebeli) is quite confused. Some authors distinguish them as separate species of the M. alcon species group, while others consider them as subspecies or simply ecological forms. Our aim was to study the pattern of genetic differentiation among several populations of these taxa with reference to their taxonomic position.Imagoes were collected from 27 localities in Central Europe between 1999 and 2003. Samples originated from four regions: northern Hungary, central Hungary, Romania: Transylvania and Slovenia. Enzyme polymorphism was analysed using polyacrylamide gel electrophoresis. In all samples 16 enzyme loci were studied. In the analysis of the data, F-statistics was computed and the total genetic variation was partitioned into within and between population components. Nei's genetic distances were calculated and UPGMA dendrogram was constructed on the basis of the distance matrix. Hierarchical F-statistics and amova was computed to study the pattern of genetic differentiation among the samples. Principal component analysis (PCA) was also carried out using the allele frequencies of the samples.The results of all analyses indicated a high level of differentiation among the samples. The differences among the samples collected in different years from the same population accounted for a considerable amount of the between sample variation. The distribution of the between sample variation did not exhibit a species pattern. The results of amova and PCA indicated that the geographic pattern was slightly more expressed in the between sample variation compared with the species pattern of it. These results seem to contradict with the conventional taxonomical subdivision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.