Abstract-Identifying mammalian vigilance states has recently become an important topic in biological science research. The biological researchers concern not only to improve the accuracy rate for classifying the vigilance states, but also to extract the meaningful frequency bands. In this study, we propose a novel feature selection to extract the critical frequency bands of rat's EEG signals. The proposed algorithm adopts the concept of neighborhood relation during adding and eliminating a candidate feature. In the experiments, the proposed method shows better accuracy rate, and find out the feature subset which locate on the critical frequency bands for recognizing rat's vigilance states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.