Heterogeneous reversible addition–fragmentation chain transfer (RAFT) polymerization is of growing interest as an in situ route to well-defined block copolymers and block copolymer nanoparticles. Recent investigations on heterogeneous RAFT polymerization have demonstrated that the position of RAFT groups has a significant effect on the nature of heterogeneous RAFT polymerization as well as the final block copolymer nanoparticles. Herein, we investigated RAFT dispersion polymerization mediated by an R-type macromolecular RAFT (macro-RAFT) agent or a Z-type macro-RAFT agent. We found that well-controlled polymerization was achieved in the R-RAFT dispersion polymerization, while uncontrolled polymerization occurred in the Z-RAFT dispersion polymerization (i.e., low monomer conversion, broad molar mass distribution, and low blocking efficiency). This problem could be addressed by using a binary mixture of the R-type macro-RAFT agent and the Z-type macro-RAFT agent. Additionally, RAFT seeded dispersion polymerization was also employed to improve the RAFT controllability of the Z-RAFT dispersion polymerization. Well-controlled polymerization was observed in each case regardless of the position of RAFT groups. Finally, the spatial distribution of RAFT groups could significantly affect the morphologies of block copolymer nanoparticles. This study not only provides important insights into the mechanism of heterogeneous RAFT polymerization but also enables one to control the position of RAFT groups within block copolymer nanoparticles without compromising the RAFT controllability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.