Zero-shot Learning (ZSL), which aims to predict for those classes that have never appeared in the training data, has arisen hot research interests. The key of implementing ZSL is to leverage the prior knowledge of classes which builds the semantic relationship between classes and enables the transfer of the learned models (e.g., features) from training classes (i.e., seen classes) to unseen classes. However, the priors adopted by the existing methods are relatively limited with incomplete semantics. In this paper, we explore richer and more competitive prior knowledge to model the inter-class relationship for ZSL via ontology-based knowledge representation and semantic embedding. Meanwhile, to address the data imbalance between seen classes and unseen classes, we developed a generative ZSL framework with Generative Adversarial Networks (GANs).Our main findings include: (i) an ontology-enhanced ZSL framework that can be applied to different domains, such as image classification (IMGC) and knowledge graph completion (KGC); (ii) a comprehensive evaluation with multiple zero-shot datasets from different domains, where our method often achieves better performance than the state-of-the-art models. In particular, on four representative ZSL baselines of IMGC, the ontology-based class semantics outperform the previous priors e.g., the word embeddings of classes by an average of 12.4 accuracy points in the standard ZSL across two example datasets (see Figure 4).
Zero-shot learning (ZSL) which aims to deal with new classes that have never appeared in the training data (i.e., unseen classes) has attracted massive research interests recently. Transferring of deep features learned from training classes (i.e., seen classes) are often used, but most current methods are black-box models without any explanations, especially textual explanations that are more acceptable to not only machine learning specialists but also common people without artificial intelligence expertise. In this paper, we focus on explainable ZSL, and present a knowledge graph (KG) based framework that can explain the transferability of features in ZSL in a human understandable manner. The framework has two modules: an attentive ZSL learner and an explanation generator. The former utilizes an Attentive Graph Convolutional Network (AGCN) to match class knowledge from WordNet with deep features learned from CNNs (i.e., encode inter-class relationship to predict classifiers), in which the features of unseen classes are transferred from seen classes to predict the samples of unseen classes, with impressive (important) seen classes detected, while the latter generates human understandable explanations for the transferability of features with class knowledge that are enriched by external KGs, including a domain-specific Attribute Graph and DBpedia. We evaluate our method on two benchmarks of animal recognition. Augmented by class knowledge from KGs, our framework generates promising explanations for the transferability of features, and at the same time improves the recognition accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.