Abstract:In the last few years, researchers have paid increasing attention to improving the accuracy of wind speed forecasting because of its vital impact on power dispatching and grid security. However, it is difficult to achieve a good forecasting performance due to the randomness and intermittency characteristics of wind speed time series. Current forecasting models based on neural network theory could adapt to various types of time series data; however, these models ignore the importance of data pre-processing and model parameter optimization, which leads to poor forecasting accuracy. In this paper, a new hybrid model is developed for short-term multi-step wind speed forecasting, which includes four modules: (1) the data pre-processing module; (2) the optimization module; (3) the hybrid nonlinear forecasting module and (4) the evaluation module. In order to estimate the forecasting ability of the proposed hybrid model, 10 min wind speed data were applied in this paper as a case study. The experimental results in six real forecasting cases indicate that the proposed hybrid model can provide not only accurate but also stable performance in terms of multi-step wind speed forecasting can be considered an effective tool in planning and dispatching for smart grids.
In the area of pedestrian trajectory prediction, the hybrid structures of temporal feature extractor or spatial feature extractor have paved the way for the precise prediction model, and they are in larger and larger scale. Learning of specific feature encoding model not only influenced by the structure of the network, but also by the learning manners such as supervised learning and unsupervised learning. Previous works concentrated on more comprehensive encoders and more delicate designs of feature extractors. However, the mutual influence factors from the neighbour pedestrians associate with the distance to the centre pedestrian seldomly noticed. Most of the existed feature extractors in prediction models trained in the way of supervised learning other than unsupervised manners caused the problem that the extracted features are always handcrafted without the natural distinction of obscure situations. The graph contrastive accelerating encoder is proposed, which accelerates the pedestrian trajectory prediction training process of the state of the art method of spatio-temporal graph transformer networks. Employing the unsupervised contrastive learning process and the graph of neighbours representing distance affection of nearest and farthest pedestrian to the centre pedestrian, the graph contrastive accelerating encoder significantly shrinked the training time. Holding the final performance on to state of the art level, the proposed method let the lowest pedestrian trajectory prediction error show up in the obviously earlier training steps.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.