Barnacles are notorious marine fouling organisms, whose life cycle initiates with the planktonic larva, followed by the free-swimming cyprid that voluntarily explores, and searches for an appropriate site to settle and metamorphoses into a sessile adult. Within this life cycle, both the cyprid and the adult barnacle deposit multi-protein adhesives for temporary or permanent underwater adhesion. Here, we present a comprehensive review of the biochemistries behind these different adhesion events in the life cycle of a barnacle. First, we introduce the multiple adhesion events and their corresponding adhesives from two complementary aspects: the in vivo synthesis, storage, and secretion as well as the in vitro morphology and biochemistry. The amino acid compositions, sequences, and structures of adult barnacle adhesive proteins are specifically highlighted. Second, we discuss the molecular mechanisms of adult barnacle underwater attachment in detail by analyzing the possible adhesive and cohesive roles of different adhesive proteins, and based on these analyses, we propose an update to the original barnacle underwater adhesion molecular model. We believe that this review can greatly promote the general understanding of the molecular mechanisms underlying the reversible and irreversible underwater adhesion of barnacles and their larvae. Such an understanding is the basis for the prevention of barnacle fouling on target surfaces as well as designing conceptually new barnacle-inspired artificial underwater adhesives.
Developing adhesives that can function underwater remains a major challenge for bioengineering, yet many marine creatures, exemplified as mussels and barnacles, have evolved their unique proteinaceous adhesives for strong wet adhesion. The mechanisms underlying the strong adhesion of these natural adhesive proteins provide rich information for biomimetic efforts. Here, combining atomic force microscopy (AFM) imaging and force spectroscopy, we examine the effects of pH on the self-assembly and adhesive properties of cp19k, a key barnacle underwater adhesive protein. For the first time, we confirm that the bacterial recombinant Balanus albicostatus cp19k (rBalcp19k), which contains no 3,4-dihydroxyphenylalanine (DOPA) or any other amino acids with post-translational modifications, can self-assemble into aggregated nanofibers at acidic pHs. Under moderately acidic conditions, the adhesion strength of unassembled monomeric rBalcp19k on mica is only slightly lower than that of a commercially available mussel adhesive protein mixture, yet the adhesion ability of rBalcp19k monomers decreases significantly at increased pH. In contrast, upon preassembly at acidic and low-salinity conditions, rBalcp19k nanofibers keep stable in basic and high-salinity seawater and display much stronger adhesion and thus show resistance to its adverse impacts. Besides, we find that the adhesion ability of Balcp19k is not impaired when it is combined with an N-terminal Thioredoxin (Trx) tag, yet whether the self-assembly property will be disrupted is not determined. Collectively, the self-assembly-enhanced adhesion presents a previously unexplored mechanism for the strong wet adhesion of barnacle cement proteins and may lead to the design of barnacle-inspired adhesive materials.
Peptides capable of self-assembling into different supramolecular structures have potential applications in a variety of areas. The biomimetic molecular design offers an important avenue to discover novel self-assembling peptides. Despite this, a lot of biomimetic self-assembling peptides have been reported so far; to continually expand the scope of peptide self-assembly, it is necessary to find out more novel self-assembling peptides. Barnacle cp19k, a key underwater adhesive protein, shows special block copolymer-like characteristics and diversified self-assembly properties, providing an ideal template for biomimetic peptide design. In this study, inspired by Balanus albicostatus cp19k (Balcp19k), we rationally designed nine biomimetic peptides (P1−P9) and systematically studied their self-assembly behaviors for the first time. Combining microscale morphology observations and secondary structure analyses, we found that multiple biomimetic peptides derived from the central region and the C-terminus of Balcp19k form distinct supramolecular structures via different self-assembly mechanisms under acidic conditions. Specifically, P9 self-assembles into typical amyloid fibers. P7, which resembles ionic self-complementary peptides by containing nonstrictly alternating hydrophobic and charged amino acids, self-assembles into uniform, discrete nanofibers. P6 with amphipathic features forms twisted nanoribbons. Most interestingly, P4 self-assembles to form helical nanofibers and novel ring-shaped microstructures, showing unique self-assembly behaviors. Apart from their self-assembly properties, these peptides showed good cytocompatibility and demonstrated promising applications in biomedical areas. Our results expanded the repertoire of self-assembling peptides and provided new insights into the structure−function relationship of barnacle cp19k.
Wet adhesion technology has potential applications in various fields, especially in the biomedical field, yet it has not been completely mastered by humans. Many aquatic organisms (e.g., mussels, sandcastle worms, and barnacles) have evolved into wet adhesion specialists with excellent underwater adhesion abilities, and mimicking their adhesion principles to engineer artificial adhesive materials offers an important avenue to address the wet adhesion issue. The crustacean barnacle secretes a proteinaceous adhesive called barnacle cement, with which they firmly attach their bodies to almost any substrate underwater. Owing to the unique chemical composition, structural property, and adhesion mechanism, barnacle cement has attracted widespread research interest as a novel model for designing biomimetic adhesive materials, with significant progress being made. To further boost the development of barnacle cement–inspired adhesive materials (BCIAMs), it is necessary to systematically summarize their design strategies and research advances. However, no relevant reviews have been published yet. In this context, we presented a systematic review for the first time. First, we introduced the underwater adhesion principles of natural barnacle cement, which lay the basis for the design of BCIAMs. Subsequently, we classified the BCIAMs into three major categories according to the different design strategies and summarized their research advances in great detail. Finally, we discussed the research challenge and future trends of this field. We believe that this review can not only improve our understanding of the molecular mechanism of barnacle underwater adhesion but also accelerate the development of barnacle-inspired wet adhesion technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.