Truffles are ascomycetous ectomycorrhizal fungi that have elevated status in the culinary field due to their unique aroma and taste as well as their nutritional value and potential biological activities. Tuber melanosporum, T. indicum, T. panzhihuanense, T. sinoaestivum, and T. pseudoexcavatum are five commercial truffle species mainly distributed in Europe or China. In this study, an untargeted metabolomics technology based on an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was applied to analyze the metabolic profiles and variations among these five truffle species. In our results, a total of 2376 metabolites were identified under positive ion mode, of which 1282 had significantly differential amounts and covered 110 pathways or metabolisms. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) revealed a clear separation from each of these five truffles, indicating a significantly different metabolic profile among them, with the biggest difference between T. melanosporum and the other four truffles. The differential metabolites covered various chemical categories, and a detailed analysis was performed for nine metabolic categories, including amino acids, saccharides and nucleosides, organic acids, alkaloids, flavonoids, carnitines, phenols and alcohols, esters, and sulfur compounds. For each of the nine categories, most of metabolites predominantly accumulated in T. melanosporum compared with the other four truffles. Meanwhile, there were significant differences of the average ion intensity in each category among the five truffles, e.g., higher amounts of amino acids was detected in T. panzhihuanense and T. pseudoexcavatum; T. indicum contained significantly more carnitines, while there were more alkaloids in T. melanosporum. Additionally, some metabolites with biological activities were discussed for each category, such as acetyl-L-carnitine, adenine, neobavaisoflavone, and anandamide. Generally, this study may provide the valuable information regarding the variation of the metabolic composition of these five commercial truffle species, and the biological significance of these metabolites was uncovered to explore the metabolic mechanisms of truffles, which would be helpful for further research on the compounds and potential biological functions in truffles that have not yet been investigated.
Truffles are world-renowned premium commodities. Due to their unique aroma and rarity, the price of truffles has always been very high. In this study, Diethylaminoethyl anion exchange chromatography and gel filtration were employed for polysaccharide purification from two different species of Chinese truffles. Three polysaccharide fractions were obtained from Tuber panzhihuanense and referred to as TPZ-NP, TPZ-I, and TPZ-II. Additionally, two polysaccharide fractions were purified from T. pseudoexcavatum (TPD-NP and TPD-I). The results of structural elucidation indicated that the polysaccharide from different species showed different monosaccharide composition and linkage units, as well as molecular weight. Two of the polysaccharide fractions with the highest yield, TPZ-I and TPD-I, were chosen for biological testing. The results indicated that both fractions displayed antioxidant properties through mediation of the intestinal cellular antioxidant defense system, which could protect cultured intestinal cells from oxidative stress-induced damage and cell viability suppression. The TPD-I fraction showed stronger antioxidant effects, which may be due to the difference in structure. Further study on the structure-activity relationship is needed to be done.
BackgroundOur aim was to explore how the ectomycorrhizae of an indigenous tree,Quercus acutissima, with a commercial truffle, Chinese black truffle (Tuber indicum), affects the host plant physiology and shapes the associated microbial communities in the surrounding environment during the early stage of symbiosis.MethodsTo achieve this, changes in root morphology and microscopic characteristics, plant physiology indices, and the rhizosphere soil properties were investigated when six-month-old ectomycorrhizae were synthesized. Meanwhile, next-generation sequencing technology was used to analyze the bacterial and fungal communities in the root endosphere and rhizosphere soil inoculated with T. indicum or not.ResultsThe results showed that colonization by T. indicum significantly improved the activity of superoxide dismutase in roots but significantly decreased the root activity. The biomass, leaf chlorophyll content and root peroxidase activity did not obviously differ. Ectomycorrhization of Q. acutissima with T. indicum affected the characteristics of the rhizosphere soil, improving the content of organic matter, total nitrogen, total phosphorus and available nitrogen. The bacterial and fungal community composition in the root endosphere and rhizosphere soil was altered by T. indicum colonization, as was the community richness and diversity. The dominant bacteria in all the samples were Proteobacteria and Actinobacteria, and the dominant fungi were Eukaryota_norank, Ascomycota, and Mucoromycota. Some bacterial communities, such as Streptomyces, SM1A02, and Rhizomicrobium were more abundant in the ectomycorrhizae or ectomycorrhizosphere soil. Tuber was the second-most abundant fungal genus, and Fusarium was present at lower amounts in the inoculated samples.DiscussionOverall, the symbiotic relationship between Q. acutissima and T. indicum had an obvious effect on host plant physiology, soil properties, and microbial community composition in the root endosphere and rhizosphere soil, which could improve our understanding of the symbiotic relationship between Q. acutissima and T. indicum, and may contribute to the cultivation of truffle.
In this study, eight-month-old ectomycorrhizae of Tuber borchii with Corylus avellana were synthesized to explore the influence of T. borchii colonization on the soil properties and the microbial communities associated with C. avellana during the early symbiotic stage. The results showed that the bacterial richness and diversity in the ectomycorrhizae were significantly higher than those in the control roots, whereas the fungal diversity was not changed in response to T. borchii colonization. Tuber was the dominant taxon (82.97%) in ectomycorrhizae. Some pathogenic fungi, including Ilyonectria and Podospora , and other competitive mycorrhizal fungi, such as Hymenochaete , had significantly lower abundance in the T. borchii inoculation treatment. It was found that the ectomycorrhizae of C. avellana contained some more abundant bacterial genera (e.g., Rhizobium , Pedomicrobium , Ilumatobacter , Streptomyces, and Geobacillus ) and fungal genera (e.g., Trechispora and Humicola ) than the control roots. The properties of rhizosphere soils were also changed by T. borchii colonization, like available nitrogen, available phosphorus and exchangeable magnesium, which indicated a feedback effect of mycorrhizal synthesis on soil properties. Overall, this work highlighted the interactions between the symbionts and the microbes present in the host, which shed light on our understanding of the ecological functions of T. borchii and facilitate its commercial cultivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.