Social media reviews play an increasingly important role in ranking the influence of urban brands. In this study, the public social media review database is mined, and a regression model of urban influence is established. Firstly, this study introduces text mining and data collection. Comment data are collected from static websites and dynamic websites, and ICTCLAS word segmentation tool is used to preprocess the comment data. The algorithm of urban influence level is established, and finally the regression model of urban brand influence is established. A database of 10000 city-related reviews was used in the experiment. The gender thesaurus is established to further improve the accuracy of the experimental results. The feasibility of the model is verified from two aspects: expectation calculation and standardization. This paper analyzes the composition of citizens who comment on social media and the proportion of comment content and puts forward some suggestions to enhance the influence of the city. Finally, it summarizes the popular comments in different months in December and obtains the force points to enhance the influence of the city in different time periods from the structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.