We have developed a set of web-based SNP selection tools (freely available at http://www.niehs.nih.gov/snpinfo) where investigators can specify genes or linkage regions and select SNPs based on GWAS results, linkage disequilibrium (LD), and predicted functional characteristics of both coding and non-coding SNPs. The algorithm uses GWAS SNP P-value data and finds all SNPs in high LD with GWAS SNPs, so that selection is from a much larger set of SNPs than the GWAS itself. The program can also identify and choose tag SNPs for SNPs not in high LD with any GWAS SNP. We incorporate functional predictions of protein structure, gene regulation, splicing and miRNA binding, and consider whether the alternative alleles of a SNP are likely to have differential effects on function. Users can assign weights for different functional categories of SNPs to further tailor SNP selection. The program accounts for LD structure of different populations so that a GWAS study from one ethnic group can be used to choose SNPs for one or more other ethnic groups. Finally, we provide an example using prostate cancer and demonstrate that this algorithm can select a small panel of SNPs that include many of the recently validated prostate cancer SNPs.
We conducted a multi-stage, genome-wide association study (GWAS) of bladder cancer with a primary scan of 589,299 single nucleotide polymorphisms (SNPs) in 3,532 cases and 5,120 controls of European descent (5 studies) followed by a replication strategy, which included 8,381 cases and 48,275 controls (16 studies). In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1; rs1014971, (P=8×10−12) maps to a non-genic region of chromosome 22q13.1; rs8102137 (P=2×10−11) on 19q12 maps to CCNE1; and rs11892031 (P=1×10−7) maps to the UGT1A cluster on 2q37.1. We confirmed four previous GWAS associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P=4×10−11) and a tag SNP for NAT2 acetylation status (P=4×10−11), as well as demonstrated smoking interactions with both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into mechanisms of carcinogenesis.
The Illumina HumanMethylation450 BeadChip is increasingly utilized in epigenome-wide association studies, however, this array-based measurement of DNA methylation is subject to measurement variation. Appropriate data preprocessing to remove background noise is important for detecting the small changes that may be associated with disease. We developed a novel background correction method, ENmix, that uses a mixture of exponential and truncated normal distributions to flexibly model signal intensity and uses a truncated normal distribution to model background noise. Depending on data availability, we employ three approaches to estimate background normal distribution parameters using (i) internal chip negative controls, (ii) out-of-band Infinium I probe intensities or (iii) combined methylated and unmethylated intensities. We evaluate ENmix against other available methods for both reproducibility among duplicate samples and accuracy of methylation measurement among laboratory control samples. ENmix out-performed other background correction methods for both these measures and substantially reduced the probe-design type bias between Infinium I and II probes. In reanalysis of existing EWAS data we show that ENmix can identify additional CpGs, and results in smaller P-value estimates for previously-validated CpGs. We incorporated the method into R package ENmix, which is freely available from Bioconductor website.
Background: Maternal smoking during pregnancy is associated with significant infant morbidity and mortality, and may influence later disease risk. One mechanism by which smoking (and other environmental factors) might have long-lasting effects is through epigenetic modifications such as DNA methylation.Objectives: We conducted an epigenome-wide association study (EWAS) investigating alterations in DNA methylation in infants exposed in utero to maternal tobacco smoke, using the Norway Facial Clefts Study.Methods: The Illumina HumanMethylation450 BeadChip was used to assess DNA methylation in whole blood from 889 infants shortly after delivery. Of 889 mothers, 287 reported smoking—twice as many smokers as in any previous EWAS of maternal smoking. CpG sites related to maternal smoking during the first trimester were identified using robust linear regression.Results: We identified 185 CpGs with altered methylation in infants of smokers at genome-wide significance (q-value < 0.05; mean Δβ = ± 2%). These correspond to 110 gene regions, of which 7 have been previously reported and 10 are newly confirmed using publicly available results. Among these 10, the most noteworthy are FRMD4A, ATP9A, GALNT2, and MEG3, implicated in processes related to nicotine dependence, smoking cessation, and placental and embryonic development.Conclusions: Our study identified 10 genes with newly established links to maternal smoking. Further, we note differences between smoking-related methylation changes in newborns and adults, suggesting possible distinct effects of direct versus indirect tobacco smoke exposure as well as potential differences due to age. Further work would be needed to determine whether these small changes in DNA methylation are biologically or clinically relevant. The methylation changes identified in newborns may mediate the association between in utero maternal smoking exposure and later health outcomes.Citation: Markunas CA, Xu Z, Harlid S, Wade PA, Lie RT, Taylor JA, Wilcox AJ. 2014. Identification of DNA methylation changes in newborns related to maternal smoking during pregnancy. Environ Health Perspect 122:1147–1153; http://dx.doi.org/10.1289/ehp.1307892
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.