Sparse Code Multiple Access (SCMA) technology is a new multiple access scheme based on non-orthogonal spread spectrum technology, which was proposed by Huawei in 2014. In the algorithm application of this technology, the original Message Passing Algorithm (MPA) has slow convergence speed and high algorithm complexity. The threshold-based MPA has a high Bit Error Ratio (BER) when the threshold is low. In the Maximum logarithm Message Passing Algorithm (Max-log-MPA), the approximation method is used, which will cause some messages to be lost and the detection performance to be poor. Therefore, in order to solve the above problems, a Threshold-Based Max-log-MPA (T-Max-log-MPA) low complexity multiuser detection algorithm is proposed in this paper. The Maximum logarithm (Max-log) algorithm is combined with threshold setting, and the stability of user nodes is considered as a necessary condition for decision in the algorithm. Before message updating, the user information nodes are judged whether the necessary conditions for the stability of the user node have been met, and then the threshold is determined. Only users who meet the threshold condition and pass the necessary condition of user node stability can be decoded in advance. In the whole process, the logarithm domain MPA algorithm is used to convert an exp operation and a multiplication operation into a maximum value and addition operation. The simulation results show that the proposed algorithm can effectively reduce the computational complexity while ensuring the BER, and with the increase of signal-to-noise ratio, the effect of the Computational Complexity Reduction Ratio (CCRR) is more obvious.
With the continuous progress of science and technology, intelligent wireless sensor network (IWSN) communication has become indispensable in its role in production and life because of its convenient network settings and flexible use. However, with the widespread availability of intelligent wireless sensor networks, the use of many wireless sensor nodes constitutes a multi-node wireless communication system, which turns the accuracy and low complexity of multi-node detection in sensor networks into a problem. Although the traditional algorithm has excellent performance, it cannot give consideration to both accuracy and complexity. Therefore, a maximum logarithm message passing algorithm based on serial and threshold (S-T-Max-log-MPA) for multi-mode detection in IWSN is proposed in this paper. In this algorithm, the threshold is used to determine the necessary conditions of sensor node stability first, and then the sensor node information updating is integrated into the resource node information updating, so that the system can maintain good accuracy, performance, and change the situation of poor system accuracy at low threshold. Compared with the traditional algorithm, the proposed algorithm significantly changes the algorithm complexity reduction rate of the system multi-node detection. Simulation results show that the algorithm has a good balance between accuracy and complexity reduction rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.