We investigated the dynamics of a diffusive ratio-dependent Holling-Tanner predator-prey model with Smith growth subject to zero-flux boundary condition. Some qualitative properties, including the dissipation, persistence, and local and global stability of positive constant solution, are discussed. Moreover, we give the refined a priori estimates of positive solutions and derive some results for the existence and nonexistence of nonconstant positive steady state.
A discrete predator-prey model with Holling-Tanner functional response is formulated and studied. The existence of the positive equilibrium and its stability are investigated. More attention is paid to the existence of a flip bifurcation and a Neimark-Sacker bifurcation. Sufficient conditions for those bifurcations have been obtained. Numerical simulations are conducted to demonstrate our theoretical results and the complexity of the model.
We investigate the complex dynamics of a diffusive Holling-Tanner predation model with the Allee effect on prey analytically and numerically. We examine the existence of the positive equilibria and the related dynamical behaviors of the model and find that when the model is with weak Allee effect, the solutions are local and global stability for some conditions around the positive equilibrium. In contrast, when the model is with strong Allee effect, this may lead to the phenomenon of bistability; that is to say, there is a separatrix curve that separates the behavior of trajectories of the system, implying that the model is highly sensitive to the initial conditions. Furthermore, we give the conditions of Turing instability and determine the Turing space in the parameters space. Based on these results, we perform a series of numerical simulations and find that the model exhibits complex pattern replication: spots, spots-stripes mixtures, and stripes patterns. The results show that the impact of the Allee effect essentially increases the models spatiotemporal complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.